
12 December 2006

Cansat � Milestone II

Implementation and Integration

Squad 7
Cano, Angel Mario

Forslund, Lars Anders

Hakenberg, Jan Philipp

Krishnamurthy, Narayanan

Wang, Hankang

Worracharoen, Pakasit

1543440

1543952

1537190

1543083

1543524

1543191

 2

Table of Contents

Introduction .. 3
Project managements and task division ... 3

Schedule ... 4
The construction... 5

Frequency Assignment ... 6
Subsystems ... 6

Responsibilities .. 6
FM75 Temperature Sensor functions... 7
Temperature Sensor (operations) ... 9

Tests Scenarios... 14
Previous Tests Scenarios.. 14

Communication between two Groundstations ... 14
Test of cansat circuit, and cansat to groundstation communication..................................... 15
Planned Test Scenarios... 16

Test for Pressure sensor.. 16
Protocol for testing and debugging .. 18

Groundstation Software.. 21
The Cansat 7 mission ... 21
The Simulation mission.. 22
The Board Test ... 22
General changes ... 22
Code of interest: ... 23
Future extensions: .. 24

Conclusions and future work.. 25
References .. 26

 3

Introduction

In the second milestone, we take a closer look at the functionality of the different subsystems
of the CanSat – the structure, electronics and software. We also give a detailed description of
the various subsystem tests we have performed and will perform in the future. Following the
fixed timeline, this report also aims to evaluate our progress so far.

We have devised advanced approaches and technology to meet the mission requirements. For
instance, our protocol is highly sophisticated. In fact, the final protocol is so sophisticated that
we had to invent a simpler protocol to test and debug our devices.

We summarize what we have accomplished so far:

• The cansat structure is manufactured, and is now being optimized in terms of weight,
performace, material characteristics, and overall stability.

• The groundstation circuit works and can be configured in running time by the
groundstation software.

• The groundstation software runs stably and already meets all the requirements, for
instance the graphical display and the file input output. In a later section we point out
the most relevant code, which handles the input stream.

• The cansat circuit is functioning. We have already programmed the cansat to send
pressure data to the groundstation.

Project managements and task division

As the project advances and all subsystems are developed, we have not change the task
division a lot. However, he has refined the subtask distribution as we will indicate later.

 4

Schedule

TRAFFIC LIGHT STATUS Color
Project on Track
Delayed Completion
Out of Deadline

S.No Activity Responsiblity Date Status Remarks

1 M1: Mission Analysis and Planning
Define Task TEAM 10.10.06 Completed
Allocation of task TEAM 16.10.06 Completed
Time schedule/ Work Plan TEAM 20.10.06
Identify the Different Subsystems TEAM 23.10.06 Completed
System Architecture TEAM 23.10.06
Hardware requirement/Structural Req ANDE 25.10.06 Completed

Circuit design ANG/NAR 27.10.06
Completed
by/28.10.06

Data Transfer Protocol(Algorithm) HANK/PAK 27.10.06 Completed
CANSAT Programming PAK/NAR 27.10.06
JAVA Programing/Front End JAN 27.10.06
Final review meet of Mission 1 TEAM 30.10.06
Submit report 31.10.06 Resubmit 17.11.06

2 M2:Implementation and Integration
Integration of Ground Station HANK/PAK 3.11.06 Completed Test- CLEAR

Ground Station Programming JAN 3.11.06 Completed
yet to be
tested

Testing of ground station/Hardware JAN/PAK 10.11.06 Completed Test clear
Structure Fabrication ANDE/NAR 17.11.06 Completed
Implement Power supply/ATMEL ANG 17.11.06 Complete
Implement Pressure/Temp sensor ANG 20.11.06 Complete
Implement GPS HAK 22.11.06 complete
Implement RT433/Max ANG/HAK 24.11.06 complete
Review Meeting-check point TEAM 28.11.06
Implement test grounds for each
subsystems/Description HAN/ANG/NAR 28.11.06
Integration of CANSAT/Hardware ANG 28.11.06 Complete
CANSAT Programming/Detailed
description PAK/NAR 1.12.06
Protocol /Detailed Description HANK 9.12.06
Integrate various subsystems together ANG 9.12.06 to be debugged
Final Review meet of Mission 2 TEAM 11.12.06
Submit report 12.12.06

3 M3:Test Evaluation
System Debuging /Troubleshooting HAN/JAN/PAK 17.12.06
Review meeting - Check point TEAM 2.01.07
Implement test grounds for the
complete system/structure

HAN/ANG/
NAR/ANDE 14.01.07

Final Review meet of Mission 3 TEAM 20.01.07
Submit report 23.01.07

4 M4:Final Presentation
Complete project presentation TEAM 30.01.07

 5

The construction

We are building our CanSat
using a stainless steel jar
bought in a kitchenware store.
This jar has many suitable
properties, especially the
screw-on lid perforated with
2mm holes. The volume of the
jar is approximately 330 ml,
well under the designated
maximum volume of 0.5 liter.
The weight of the jar is 110
grams.

The choice of using this case instead of building one specifically designed for this purpose has
pro's and cons. We've had to adapt our design for the case, instead of the other way round.
Although sometimes limiting, this gives a different type of challenges, similar to what you
would encounter working on an actual satellite. Fortunately for us, the case has not given us
any real problems.

As for the construction, we plan to build the whole structure into the lid, leaving the actual jar
virtually untouched. This design will ensure easy maintenance, as the circuit board can be
accessed simply by screwing the lid of.

The inner structure is based on circular plastic plates that are
attached to three cylindrical rods. The rods are also made of
stainless steel, and are composed of smaller screw-together
rods. The rods will be covered in plastic tape for isolation. Two
rectangular slits on each of the plates, and a fitting contour of
the circuit board, keeps the circuit board in place. The rods do
not make contact with the circuit board.

The battery is mounted on the two rear rods. Not having found
a suitable battery compartment, we've decided to go with a
velcro construction to attach the battery to the rods. The
components of the circuit board will be mounted on the other
side of the circuit board.

As the GPS receiver is said to require “open sky” to work properly, we’ve decided to put it on
top of the lid. This will increase the total volume, but we will still be far from exceeding the
maximum volume. The cord is will be led through one of the holes of the lid.

G
P

S

G
P

S

10464

60

85

INNER STRUCTURE OUTER CASE

DETAIL

GPS

GPS

PRESSURE
SENSOR

TEMPERATURE
SENSOR

B
A

T
T

E
R

Y
 C

O
M

P
A

R
T

M
E

N
T

G
P

S

G
P

S

10464

60

85

INNER STRUCTURE OUTER CASE

DETAIL

GPS

GPS

PRESSURE
SENSOR

TEMPERATURE
SENSOR

B
A

T
T

E
R

Y
 C

O
M

P
A

R
T

M
E

N
T

 6

The pressure and temperature sensors will be placed just under the holes on the lid, giving
them direct contact with the outside environment. We will try to make the whole construction
sealed by blocking the rest of the holes (besides the hole used for the GPS receiver cord).

From an aesthetic viewpoint, the
jar’s appealing design will give our
CanSat a professional look and
feel.

We have weighed in the
components, inner structure and jar
to approximately 300 grams. This
leaves 200 grams for battery, wiring etc, which to our knowledge is more than enough.

The construction has almost been completed, having been altered several times.

Frequency Assignment

Our Cansat group has suggested frequencies to each Cansat Group. Since the Transceiver chip
is able to switch between 10 different frequencies, each Cansat group can send and receiver
via a unique frequency. We have emailed the following table of frequencies to each Cansat
group.

0 = 433,19 MHz GROUP 1
1 = 433,34 MHz GROUP 5
2 = 433,50 MHz GROUP 2
3 = 433,65 MHz GROUP 6
4 = 433,80 MHz
5 = 433,96 MHz GROUP 3
6 = 434,11 MHz GROUP 7
7 = 434,27 MHz GROUP 4
8 = 434,42 MHz GROUP 8
9 = 434,57 MHz

However, we have not yet received much feedback on whether the other groups comply.

Subsystems

Responsibilities

Angel Mario: Electronic design of the Cansat and its subsystems is completed, some
corrections were implemented since M1, these were: before we were using the MAX3232 to
deal with the 5V and 3.3V difference from the microcontroller and the RF module but finally
decided that was better for voltage decoupling reasons to use the crumb’s internal RS232
UART and convert the RF 3.3V TTL to RS232 with the MAX3232 and use both devices in

 7

RS232 level signal, also there were some resistor values wrong in the ground station from
10K to 1.5K, and some labelling inconsistencies in the schematics of the ground station as
well, communication has been achieved in the cansat to GS direction, also pressure sensor
was installed and it’s working properly, only things left in respect to hardware is temperature
and GPS sensors.

Lars Anders: I am primarily in charge of the construction of the structure of the CanSat. I
have added most recent photographs in the report, to prove how advanced the structure is.
Basically, I am only waiting for Naresh and Pakasit, who are going to finish the Cansat circuit
soldering, so that can be build in the construction.

Jan Philipp: The core of the GroundStation software is already extremely elegant. Screen
shots are given. As the lead programmer, I have succeeded, mainly devising the
communications protocol, timing, and testing. I am looking forward, to make the application
as flexible and easy to handle as possible. However, stability and recovery from
communication loss remain to be the main priorities.

Hankang: I am responsible for the main program, communication module, and protocol
improvement, system intergration, system debug, document organization. Some things I have
not listed in the enumeration, because I am not sure what will turn out to be necessary that I
work on even more.

Narayanan: I am responsible for the Project management. In the initial stages, I have done the
cansat circuit design and the layout. As a part of the cansat programming, I have succeeded to
perform the first test, to simulate the data acquisition of the pressure sensor and the
Microcontroller programming. More of this later in the report.

Pakasit: I take care for the GPS data-acquisition module, temperature data-acquisition
module, and especially help to debug hardware. I have done most of the soldering of the
circuits. The temperature sensor and stuff like that are the only things that need to be
integrated yet. So I am mainly done with everything.

FM75 Temperature Sensor functions

Temperature sensor data acquisition interface is IIC bus, so we need to operate the IIC bus to
read temperature data. And there are two sensors in this system according to the requirement.

#include <mega128.h>

We must first declare which microcontroller port and port bits are used for communication
with the FM75 through I2C bus

Example:
#asm
 .equ __i2c_port=0x1B ;PORTA
 .equ __sda_bit=0
 .equ __scl_bit=1

 8

#endasm
#include <i2c.h>

/*now we can include the FM75 Functions*/
// FM75 Temperature Sensor functions
#include <fm75.h>
#include <delay.h>

The LM75 Functions are:

void fm75_init(unsigned char chip,signed char thyst,signed

char tos, unsigned char pol)

This function initializes the FM75 sensor chip. Before calling this function the I2C bus must
be initialized by calling the i2c_init function.

This is the first function that must be called prior to using the other FM75 Functions.

If more then one chip is connected to the I2C bus, then the function must be called for each
one, specifying accordingly the function parameter chip.

Maximum 8 FM75 chips can be connected to the I2C bus, their chip address can be from 0 to
7. (In this case, we use 2 temperature sensors)

The FM75 is configured in comparator mode, where it functions like a thermostat.

The O.S. output becomes active when the temperature exceeds the tos limit, and leaves the
active state when the temperature drops below the thyst limit.

Both thyst and tos are expressed in °C. pol represents the polarity of the LM75 O.S. output in
active state. If pol is 0, the output is active low and if pol is 1, the output is active high.

Example how to display the temperature of two FM75 sensors with addresses 0 and 1 (send
the measured temperature via the RS232 serial communication)

// I2C Bus initialization
i2c_init();

// FM75 Temperature Sensor initialization
// thyst: 20°C
// tos: 25°C
// O.S. polarity: 0
fm75_init(0,20,25,1);
fm75_init(1,20,25,1);
DDRA=0xFF;
PORTA=0xFF;

while (1)
 {

 9

 temp=fm75_temperature_10(0);
 temp1=fm75_temperature_10(1);
 sign='+';
 if (temp<0)
 {
 sign='-';
 temp=-temp;
 };
 printf("t=%c%i.%u\xf8C\r\n",sign,temp/10,temp%10);
 delay_ms(200);
 };
}

Temperature Sensor (operations)

1. Basic Operation

The FM75 temperature sensing circuitry continuously produces an analog voltage that is
proportional to the device temperature. At regular intervals the FM75 converts the analog
voltage to a two’s complement digital value, which is placed into the temperature register.

The FM75 has a SMBus compatible digital serial interface which allows the user to access the
data in the temperature register at any time. In addition, the serial interface gives the user easy
access to all other FM75 registers to customize operation of the device.

The FM75 temperature-to-digital conversion can have 9, 10, 11, or 12-bit resolution as
selected by the user, providing 0.5.C, 0.25.C, 0.125.C, and 0.0625.C temperature resolution,
respectively. At power-up the default conversion resolution is 9-bits. The conversion
resolution is controlled by the R0 and R1 bits in the Configuration Register.

The thermal alarm has two modes of operation: Comparator Mode and Interrupt Mode.

 (1) Comparator Mode

+ The new digital temperature is compared to the value stored in the T(OS) and
T(HYST) registers

+ If a fault tolerance number of consecutive temperature measurements are greater
than the value stored in the T(OS) register, the O.S. output will be activated

+ Once the O.S. output is active, it will remain active until the first time the measured
temperature drops below the temperature stored in the T(HYST) register.

(2) Interrupt Mode

 10

+ This mode will first become active after a fault tolerance number of consecutive
temperature measurements exceed the value stored in the T(OS) register.

+ Once O.S. is active, it can only be cleared by a user read from any of the FM75
registers or by putting the FM75 into Shutdown Mode.

+ It can only be activated again by a fault tolerance number of consecutive
temperature measurements that are lower than the vale stored in T(HYST)
+ Once it is activated the O.S. output can only be deactivated by a user read or
shutdown.

2. Data Format/Structure

(1) Command Register

MSB LSB

0 0 0 0 0 0 P1 P0

The data in Command Register (8-bit) indicates which of the other four registers
(Temperature, Configuration, T(OS), or T(HYST)) the user intends to read from or write to
during and upcoming operation.

The P1 and P0 bits of the Command Register determine which register is to be accessed.

(2) Temperature Register

 MSB 14 13 12 11 … 1 LSB

SB TMSB T T T T T T 9 –bit
LSB

10 –
bit
LSB

11 –
bit
LSB

12 –
bit
LSB

0 0 0 0

SB = Two’s complement sign bit

TMSB = Temperature MSB

9 – bit LSB = Temperature LSB for 9 – bit conversions

10 – bit LSB = Temperature LSB for 9 – bit conversions

11 – bit LSB = Temperature LSB for 9 – bit conversions

12 – bit LSB = Temperature LSB for 9 – bit conversions

 11

(3) Configure Register

 MSB LSB

X1 R1 R0 F1 F0 POL CMP/INT SD

 R1 = Resolution bit 1.

 R0 = Resolution bit 2.

 F1 = Fault tolerance bit 1.

 F0 = Fault tolerance bit 2.

 POL = O.S. output polarity. 0 = active low, 1 = active high.

 CMP/INT = Thermostat mode. 0 = comparator mode, 1 = interrupt mode.

 SD = Shut down. 0 = normal operation, 1 = shutdown operation mode.

(4) Over-Limit-Signal Temperature Register (T(OS)) / Hysteresis Temperature
Register (T(HYST))

 MSB 14 13 12 11 … 1 LSB

SB TMSB T T T T T T 9 –bit
LSB

10 –
bit
LSB

11 –
bit
LSB

12 –
bit
LSB

0 0 0 0

(5) Slave Address

1 0 0 1 A2 A1 A0

GPS Receiver (GR213 Software part)

1. Operational characteristics

(1) Initialization

 12

As soon as the initial self-test is complete, the GR-213 begins the process of satellite
acquisition and tracking automatically. Under normal circumstances, it takes approximately
42 seconds to achieve a position fix, 38 seconds if ephemeris data is known. After a position
fix has been calculated, information about valid position, velocity and time is transmitted over
the output channel.

The GR-213 utilizes initial data, such as last stored position, date, time and satellite orbital
data, to achieve maximum acquisition performance. If significant inaccuracy exists in the
initial data, or the orbital data is obsolete, it may take more time to achieve a navigation
solution. I hold the world but as the world Gratiano, A stage where every man must play his
part, And mine a sad one. The GR-213 Auto-locate feature is capable of automatically
determining a navigation solution without intervention from the host system. However,
acquisition performance can be improved as the host system initializes the GR-213 in the
following situation:

1) Moving further than 500 kilometers.

2) Failure of data storage due to the inactive internal memory battery.

(2) Navigation

After the acquisition process is complete, the GR-213 sends valid navigation information over
output channels. These data include:

1) Latitude/longitude/altitude

2) Velocity

3) Date/time

4) Error estimates

5) Satellite and receiver status

2. Software Interface

The GR-213 interface protocol is based on the National Marine Electronics Association's
NMEA 0183 ASC .interface specification, which is defined in NMEA 0183.

(2.1) NMEA Transmitted Messages

 13

The default communication parameters for NMEA output are 4800 baud, 8 data bits,
stop bit, and no parity.

NMEA-0183 Output Messages

GPGGA Global positioning system fixed data

GPGLL Geographic position- latitude/longitude

GPGSA GNSS DOP and active satellites

GPGSV GNSS satellites in view

GPRMC Recommended minimum specific GNSS data

GPVTG Course over ground and ground speed

3. Data Frame Format/Structure

(1) Global Positioning System Fix Data (GGA)

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

(2) Geographic Position with Latitude/Longitude (GLL)

$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

(3) GNSS DOP and Active Satellites (GSA)

$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33

(4) GNSS Satellites in View (GSV)

$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

(5) Recommended Minimum Specific GNSS Data (RMC)

$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

(6) Course Over Ground and Ground Speed (VTG)

$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

 (7) ZDA—SiRF Timing Message

$GPZDA,181813,14,10,2003,00,00*4F

(See. GR-213-manual-E for more detail)

 14

4. Setting Syntax

(1) Manufacturing Default:

Datum: WGS84. Baud Rate: 4800.

Output: GGA, GSA, GSV, RMC.

(2) Datum change syntax:

>DOS\Sirfprog /Fdataxx.dat –Px –Bx –Csh1

-Px: x is com port, 1= COM1, 2 = COM2

-Bx: Baud rate, 4800, 9600, 19200 or 38400

Example:

Change Datum to WGS84,

Sirfprog /Fdata58.dat –P1 –B4800 –Csh1 <Entry>

After changing datum, the new datum will be kept in SRAM. If no power supplied to GR-213
for more than 30 days, user must re-set datum when power on.

Tests Scenarios

Previous Tests Scenarios

Communication between two Groundstations

After having accomplished the soldering of the Groundstation ciruit, we tested the
communication between two Groundstations. The software we are developing for the
Groundstation comprises a “Groundstation link” mission. We have installed our Java program
on two computers and connected two Groundstation circuits to each computer. We have used
our own Groundstation circuit and the one of Group 6.

 15

Setup: Both circuits were placed about 7 meters apart. Both Groundstations were sending
every second a short message with unique – increasing - identification number. Both
programs also recoded what the respective Groundstation has received.

Result: We have gained useful information from this test.

• An antenna of about 30 cm length sends and receives better than an antenna of length
5 cm.

• People standing between the sending and receiving antennas cause a communication
failure.

• Sending and receiving messages of 60 characters every second is technically possible.

• If a message comes thru, there is almost no error in transmission.

• If the signal is weak, the message will contain question marks, e.g. msg1????

• We hypothize: Characters in the ASCII table with index 128-255 may not be sent
properly.

Conclusions:

• We have increased the length of the Groundstation antenna to about 30 cm.

• The transmit power should be set to 10dBm.

• In our previous communication protocol, we have underestimated the rate of
transmission. We develop an additional, simpler communication protocol that is
suitable for testing and debugging Cansat to Groundstation communication. For
details, see below.

• We will not use question marks and ASCII code in the range 128-255 in our regular
messages.

Test of cansat circuit, and cansat to groundstation communication

The test consisted of repeatedly sending a string from the cansat to the groundstation. After
having succeeded this tricky task, we decided to activate the A/D converter, initialize it and
continuously read the value from the pressure sensor. This value is sent to the groundstation.
To get a feeling for the timing and the clock of the processor, we made a LED built-in the
crumb is toggled on and off as part of the cycle.

Results: We have gained useful information from this test.

• In the first run, we experienced a buffer overflow in the groundstation program. We
have fixed the problem, and present our new highly reliable code in the section about
the groundstation software.

 16

• We have learned about the timer of the Atmel 128. We were able to determine how
many cicles make up a second. This is relevant for the access rate especially of the gps
sensor to not cause stalling of the holux device.

Future improvements:

• Currently, our cansat would stall, if a temporary problem with the RS232 serial
communication occurs, because we are using a blocking coding style. As we were told
by the advisor, the communication functions can be called via interrupts. However, so
far, no group member is aware of this technique.

• Evidently, three more sensors need to be installed properly: Two temperature sensors
and the Holux gps receiver. We have prepared well to do these steps: Pakasit is our
expert concerning the GPS sensor, and Naresh is aware of the temperature sensor.
They provide all the technical details necessary in this report.

We append interesting code, which we have devised so far. It uses bitwise operation, which
are most efficient for the microcontroller.

#define ADC_VREF_TYPE 0x40
// Read the AD conversion result from pin adc_input
unsigned int read_adc(unsigned char adc_input) {
 ADMUX=adc_input|ADC_VREF_TYPE; // Start the AD convers.
 ADCSRA|=0x40;
 // Wait for the AD conversion to complete
 while ((ADCSRA & 0x10)==0); // waiting for ready
 ADCSRA|=0x10; // confirm status
 return ADCW; // read and return value
}

void print(unsigned char *data,unsigned char length) {
 unsigned char c1=0;
 UCSR0B=0x08; // initialization
 while (c1<length) // read a fixed number of chars
 while (UCSR0A&0x20) // waiting for ready status
 UDR0=data[c1++]; // sending data
}

Planned Test Scenarios

Of course a lot of testing needs to be performed. Please also note, that we have devised a
protocol which suits debugging well.

Test for Pressure sensor

In order to collect data from the sensors, the signals from the sensors need to be converted
into digital numbers that the processor can handle. The sensors generate a varying voltage

 17

based on what is measured and the processor cannot understand it. The processor is digital so
it only understands ones and zeros.

An analog to digital converter or ADC allows a processor to measure voltages. The world
outside the computer does not have discrete steps such as on/off, high/low, one/zero. It’s an
analog world. The ADC allows the computer to measure the analog world with the ADC. The
ADC is used to measure the voltage and convert it to a digital number that the computer can
use. The computer can take that digital number and process it to calculate the pressure.

The processor has an interface component called and analog to digital converter or ADC for
short. The ADC converts a voltage to an integer number. The integer number can be used to
calculate the voltage that was measured. The microcontroller has a 10bit ADC. This gives an
integer range of 0 to 1024 which covers 0 to 5 volts. The following equation determines the
voltage measured:

voltage = measured / 1024 * 5

If the ADC generated an integer number value of 512 then the voltage is 512 / 1024 * 5 or 2.5
volts which is half the voltage range and half the ADC range. 1024 is the number values that
the ADC can generate. With an ADC value of 512, the voltage is half the maximum voltage
which is 2.5 volts.

The pressure sensor measures the atmospheric pressure and generates a voltage proportional
to the air pressure. The higher the air pressure, the higher the voltage.

An equation is provided by the manufacturer:

V = 5.0(0.009P *0.095)

- V is the voltage and P is the air pressure in kilopascals.

- The pressure sensor is connected to pin P0.

Start a new project and write a program loop to read the pressure sensor and display the ADC
value using the CODE VISION AVR C compiler. Include a one second pause between
readings.

The equation for the pressure sensor needs to be solved for P.

V = 5.0(0.009P *0.095)

V = (5.0 * 0.009 * P) (5.0 * 0.095)+Error Factor

V = 0.045 * P 0.475

V + 0.475 –Error factor= 0.045 * P

((V + 0.475)-Error Factor)/0.045 = P

P = ((V + 0.475)-Error Factor) * 22.222

P = 22.222 * V + 10.556 –(22.222*EF)

 18

Given P = 22.222 * V +10.556-(EF*22.222), modify the program that calculated voltage and
add this equation to calculate pressure.

Procedure to test pressure sensor:

To test the Pressure sensor you will need a piece of rubber or soft plastic hose no more than a
quarter inch in diameter. A pet store that sells fish has the ideal size air hose. Run the
program that continuously displays the pressure readings. Cut a piece about 6 inches to a foot
long. Looking at the sensor board, place one end of the hose over the hole on the metal side of
the sensor. With the free side of the hose, suck the air out with your mouth. You should see
the pressure reading drop. If not, readjust the hose on the pressure sensor until you have a
better seal. Make sure the end of the hose is flat and smooth.

Protocol for testing and debugging

As explained in the section of the Cansat software, the remote device Cansat stores the
atmospheric data at a rate proportional to the inverse of its free memory. The (atmospheric)
data frames are enumerated from 0,1,2,3,…,2^28-1.

GS: The groundstation asks for the first frame:

byte(s) 1 3 1 4 1 1

content 255 CS7 G id xor 255

where:

id represents a number from n=0,1,2,3,…, 2^28-1

The 4 bytes id=(b3,b2,b1,b0) are determined as follows:

b0=n&127; n<<=7; b1=n&127; n<<=7; ...

xor checksum of all bytes including final 255

(the leading bit of xor should result in 0)

The character “G” stands for “get”. For the first frame

id=0 translating to b3=b2=b1=b0=0.

The frame is sent every second.

CS: Eventually, the Cansat receives this frame and answers with

byte(s) 1 3 1 4 1 (2) (2) (2) (8) (8) 1 1

content 255 CS7 P id ct pres temp_INS temp_OUT gps_X gps_Y xor 255

 19

where:

Id the same 4 bytes as received from the groundstation

Ct describes the athmospheric content of the data frame

the byte ct is dechiffered as

ct=64; ct+=1*hasPres; ct+=2*hasTemp_INS; …,

where hasPres, hasTemp_INS, … are either 0 or 1.

Pres holds the analog to digital port content of the pressure sensor

if ADC represents the port content, then the byte pres is computed as

pres=ADC&127; ADC<<=7; pres=ADC&127

temp_INS holds the port content of the inside temperature sensor

if ADC represents the port content, then the byte temp_INS is
computed as

temp_INS=ADC&127; ADC<<=7; temp_INS =ADC&127

temp_OUT holds the port content of the outside temperature sensor

analogous to temp_INS

gps_X holds the gps_X coordinate as string

since the GPS receiver gives a string as “9.9723123”, we send the first
8 characters of this string

gps_Y holds the gps_Y coordinate as string

analogous to gps_Y

Xor checksum of all bytes including final 255

(the leading bit of xor should result in 0)

The character “P” represents “put”. The frame is sent twice a second until Cansat receives a
different request.

GS: One of the many identical frames from Cansat reaches eventually the Groundstation,

which stores and visualizes the atmospheric data and requests the next frame by sending

byte(s) 1 3 1 4 1 1

content 255 CS7 G id xor 255

Since the groundstation is requesting the second frame, the index computes as

id=1 translating to b3=b2=b1=0, but b0=1.

Again, this frame is sent until GS receives an appropriate answer.

 20

CS: Eventually, the Cansat receives this frame. Now, the Cansat knows, that GS has

received the atmospheric data with index 0, and frees that memory. Cansat answers with the
data frame with index id=1, sending it every second until Cansat receives a different request.

This process continues in the obvious way.

Features:

• The protocol for testing and debugging comprises of a single mode for Groundstation
(require data) and a single mode for the Cansat (provide data). Therefore, both
implementations consists mainly of a single (infinite) loop.

• The link recovers from a temporary communication loss without difficulties, because
there is no change of state/mode involved.

• Implementation does not extend more than two pages of code, both in Java and C.

• We avoid the characters 128-160 of the ASCII table, which cause ambiguities in Java.

 21

Groundstation Software

The Groundstation software is complete, except for the implementation of the Cansat 7
protocol. In the previous milestone, we have reported about the principle class structure of the
code. We have also provided screenshots.

In the following, we point out, what kind of changes/advancements have been accomplished,
thereafter. Also, we append a paragraph on future work.

Changes/advancements:

As shown in the screenshot, the software realizes three “missions”:

1) The Cansat 7 mission, that communicates with the Cansat device.

2) A standalone simulation of athmospheric data input, to test and demonstrate the
functionality of the components, without Cansat device active.

3) A Groundstation Circuit Board Test, which checks the setup of the transceiver chip
and sends data, which is possibly received by another groundstation.

The Cansat 7 mission

The “Cansat 7” mission is equivalent to the “Simulation” mission, except that the
athmospheric data is acquired from the Cansat device. Since the implementation of the
“Simulation” mission is complete, the only remainder is the implementation of the
communication protocol.

 22

The Simulation mission

The simulation mission has been implemented several weeks ago. Recent changes are

• the display of 2 temperature curves in the monitor window

• we automized the map to keep the Cansat in the center of the GPS display

• as an option, we provide labels of the building of the campus

The Board Test

We give a detailed description of the (already performed) Groundstation Circuit Board Test in
Page 14. We have been collaborating with Cansat Group 6. The board test is tracked in the
data table, as shown in screenshot.

General changes

We hope to have improved on the user interface and the principle layout. For instance, we
have increased the font size and tabulator size in the table of data frames.

 23

Code of interest:

1) The following exerpt of our program performs the listening and read operation of the serial
port. Obviously, this is a crucial part!

 24

2) The next sequence of code calls the readFlush(). Since several messages might have arrived
since the last read call, the overall input is decomposed into the simgle messages, which can
be processed afterwards.

Future extensions:

• The implementation of the “debugging and testing”-protocol, as explained above.
However, this needs to be done simultaneous to the development of the Cansat
microcontroller code.

• In the next weeks, we will incorporate a map of the launch site at Kiruna. If not
explicitly specified by the user, the software will autonomously decide, which map to
choose for GPS tracking. The necessity of this action is clear: If our Cansat is
launched in Kiruna, then the campus map of Würzburg is not sufficient to display the
subsatellite point.

• We will implement smooth tracking of the cansat location. As the cansat gps
coordinate varies over the course of the mission, the map to display the current
position has to be moved along with the cansat subsatellite point. We have devised the
following stable control loop that we implement in two dimensions. As shown by the
plots of velocity and position, the subsatellite point is moved to the center of display
after no more than 2 seconds.

 25

Conclusions and future work

As explained over the course of the report, our group is well in the time schedule. All
components are working and tested for basic functioning. What remains is some more
refinement according to the specifications laid out in this report – for instance the rigid
implementation of the sophisticated protocol.

Although our group is well in the time schedule, we do not switch to relaxed mode. We will
stay focused and perform hard tests, which will put our cansat device to the test. This way our
project will probably win the overall cansat group contest, because we will devise the most
reliable communication philosophy and structure.

An important feature of our system is that if gps data is not available, the system does not
yield functioning. This event will occur if the cansat is inside a building, within a tunnel, or
underground. The remote device cansat will just send temperature and pressure sensor.

 26

References

[ATmega128] 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash,
Atmel Corporation, 2004

[CP2102] Single-Chip USB to UART Bridge}, Silicon Laboratories, 2004

[FM75] Low Voltage 2-Wire Digital Temperature Sensor with Thermal Alarm,
www.fairchildsemi.com

[GR213] HOLUX GR-213, GPS Receiver, User's guide, HOLUX Technology Inc., 2005

[Kr00] Guido Krueger: Go To Java 2, Handbuch der Java-Programmierung, 2. Auflage,
Addison-Wesley, 2000

[JP7T] Fadil Beqiri: JP7-T Family GPS-Receiver Hardware description}, FALCOM GmbH,
www.falcom.de

[MAX3232] 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232, Transceivers Using Four
External Capacitors, Maxim Integrated Products, 1999

[MPX4115A] Integrated Silicon Pressure Sensor for Manifold Absolute Pressure, Altimeter
or Barometer Applications, Motorola, Inc., 2001, www.freescale.com

[RT433F4] Infoblatt 433MHz-FM-Mehrkanal-Transceiver, Ingenieurbuero fuer Elektronik,
Wildpoldsried, 2004, www.funkmodul.com

[TS2940] 1A Ultra Low Dropout Fixed Positive Voltage Regulator, TSC, 2003

[WQ05] Wang Hankang, Li Quancheng, Jiang Hai: CDMA based distribution power net
automatization and data transmission system}, Power Engineering Conference, 2005. IPEC
2005. The 7th International.

