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Figure: Basis functions of inverse distance weighting, inverse distance coordinates, and biinvariant coordi-

nates with exponent β = 2 for an example set of six points in the unit square. ◼
Abstract: We construct biinvariant generalized barycentric coordinates for scattered sets of points in any 

Lie group. The coordinates are invariant under left-action, right-action, and inversion, and satisfy the 

Lagrange property. The construction does not utilize a metric on the Lie group, unlike inverse distance 

coordinates. Instead, proximity is determined in a vector space of higher dimensions than the group using 

the Euclidean norm. The coordinates that we propose are an inverse to the unique, biinvariant weighted 

average in the Lie group.
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Introduction

Let G be a d-dimensional Lie group, and P = {p1, p2, ..., pn} a set of points pi ∈G for i = 1, ..., n with n > d. 

Two problems can be posed from the following equations where x ∈G and w ∈ ℝn 

(1) ∑i=1
n wi = 1 (partition of unity)

(2) ∑i=1
n wi logx-1.pi = 0 (barycentric equation)

Forward problem: Given P and w, find the weighted average x ∈G that satisfies (2).

Inverse problem: Given P and x, find a barycentric coordinate w ∈ ℝn that satisfies (1) and (2).

Weighted Averages

Given P and w, [2012 Pennec/Arsigny] prove that if the data points in P belong to a sufficiently small normal 

convex neighborhood ⊂G of some point then there exists a unique solution x ∈G of (2). The weighted 

average μP(w) := x is referred to as the biinvariant mean, because when the points in P are subject to a 

group transformation by any element g ∈G, then the weighted average undergoes the same transformation:

μg.P(w) = g.x (left-action)

μP.g(w) = x.g (right-action)

μP-1(w) = x-1 (inversion)

where g.P := {g.p1, ..., g.pn}, P.g := {p1.g, ..., pn.g}, and P-1 := p1
-1, ..., pn

-1. The property of biinvariance 

holds always, regardless of whether the group permits the definition of a biinvariant metric. Finding x ∈G is 

generally a non-linear problem that can be solved using an iterative fixed point algorithm.

Remark: [2012 Pennec/Arsigny] assume that the weights wi are non-negative. However, in all examples 



that we have encountered, the weighted average is biinvariant and unique even if weights are allowed to be 

slightly outside the unit interval [0, 1] given that “the dispersion of the data is small enough”. ◼

Generalized Barycentric Coordinates

The contribution of this article is the derivation of a solution to the inverse problem: Given P, we construct a 

function cP : G →ℝn that yields a generalized barycentric coordinate cP(x) =w that satisfies (1) and (2) for 

x ∈ G. We quietly assume that “the dispersion of the data is small enough”, that logx-1.pi exists, and that 

the definition of cP : ⊂G →ℝn is restricted to a sufficiently small neighborhood ⊂G of x.

Since the weighted average μP is always biinvariant, we find it intuitive to impose biinvariance to the general-

ized barycentric coordinate cP : G →ℝn. We refer to the function cP as biinvariant, if cP is invariant under left-

action, right-action, and inversion

cg.P(g.x) =w (invariance under left-action)

cP.g(x.g) =w (invariance under right-action)

cP-1x-1 =w (invariance under inversion)

Additionally, we can design the biinvariant coordinate cP(x) = w to satisfy the Lagrange property

(3) x = pi    ⇒    wj = δi,j :=  1 i = j

0 else
  (Lagrange property)

The Lagrange property is relevant for applications that require interpolation: Given a set of tuples 

{(pi, qi) : i = 1, ..., n} with pi ∈G, and qi ∈H, a biinvariant coordinate cP function that satisfies the Lagrange 

property, and a weighted average μQ in the space H. Then, the concatenation cP ∘μQ : G →H is a biinvariant 

function that interpolates the data points, i.e. μQ(cP(pi)) = qi for all i = 1, ..., n.

Coordinates are an inverse of the weighted average, because of the identity μP(cP(x)) = x for all x ∈ G. In 

contrast to the weighted average, the biinvariant barycentric coordinate w ∈ ℝn is typically not unique. Apart 

from the generally non-linear computation of the vectors vi := logx-1.pi for i = 1, ..., n, our construction of cP 

uses only concepts from linear algebra.

Related work

We are not aware of any prior publication on generalized barycentric coordinates for Lie groups. This sec-

tion gives an overview on the literature that has inspired the creation of the biinvariant generalized barycen-

tric coordinates for Lie groups.

Lie Groups and Biinvariant Mean

[2012 Xavier Pennec, Vincent Arsigny] show that on any Lie group the weighted average μP(w) = x exists 

uniquely “provided that the dispersion of the data is small enough”, and has the property of biinvariance, and 

therefore can be referred to as the biinvariant mean determined by P and w. The authors derive explicit 

formulas for the biinvariant mean in the group of scalings and translations ST(d), the Heisenberg group 

He(d), and the special Euclidean group SE(2). Their results have motivated our search for generalized 

barycentric coordinates on Lie groups that are biinvariant and satisfy the Lagrange property.

[2017 Ethan Eade] derives explicit formulas for the group action, inverse, exp, and log for the Lie groups 

SO(3), SE(2), and SE(3) that are relevant in robotics.

Generalized Barycentric Coordinates

[2011 Shayne Waldron] derives affine coordinates for scattered sets of points in ℝd that satisfy (2), but do 

not have the Lagrange property. We will show that for an arbitrary Lie group G, the concept of affine coordi-

nates corresponds to a uniquely determined biinvariant generalized barycentric coordinate function.

[2013 Daniele Panozzo, Ilya Baran, Olga Diamanti, Olga Sorkine-Hornung] define weighted averages on 

triangular meshes, and an inverse with the Lagrange property that for a set of anchor points P maps any x 
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on the mesh to affine weights that are consistent with the weighted average. Their approach is motivated as: 

“Combining the forward and inverse problems allows us to define a correspondence mapping between two 

different meshes based on provided corresponding point pairs, enabling texture transfer, compatible remesh-

ing, morphing and more.”

[1968 Donald Shepard] introduces inverse distance weighting for the interpolation of irregularly-spaced data 

in ℝd. Shepard’s inverse distance weights do not qualify as generalized barycentric coordinates due to the 

violation of (2). [2020 Hakenberg] projects Shepard’s weights to the closest solution of (2) in the least-

square sense, which results in inverse distance coordinates. If a biinvariant metric is defined on a Lie group, 

then the metric induces inverse distance coordinates that are biinvariant and satisfy the Lagrange property. 

Because not all Lie groups can be equipped with a biinvariant metric, we propose a different construction for 

cP in this article that applies universally to any Lie group.

Construc�on of Coordinates

We derive biinvariant generalized barycentric coordinates for a d-dimensional Lie group G. Given a set of 

points P = {p1, p2, ..., pn} with pi ∈G for i = 1, ..., n, and n > d. Denote with vi := logx-1.pi the vector in the 

Lie algebra  of G. Any non-zero vector from the nullspace of the matrix V = [v1, ..., vn] of dimensions d×n 

that may be normalized to sum up to 1 produces a solution to (1) and (2).

Denote with N := nullspace(V ) a matrix of dimensions r×n with row vectors that span the nullspace of V , i.e. 

that satisfies V .NT = 0. The nullspace is non-trivial because n > d implies r > 0.

Remark: The coordinate w ∈ ℝn consists of n variables wi. Equation (1) eliminates one degree of freedom. 

In the special case when the number of points is n = d + 1, the barycentric coordinate w is uniquely deter-

mined by (2), if matrix V  has maximal rank d. ◼

Biinvariance

Theorem 11 of [2012 Pennec/Arsigny, p. 21] states that if x ∈G is the weighted average of 

P = {p1, p2, ..., pn}, i.e. a solution to the barycentric equation for a fixed vector w ∈ ℝn that satisfies (1), then 

g.x is the weighted average of g.P, x.g is the weighted average of P.g, and x-1 is the weighted average of 

P-1 for all g ∈G. Their proof argues that the nullspace of V  (as a subspace in ℝn) is invariant under left-

action, right-action, and inversion that are applied simultaneously to x and pi ∈ P for i = 1, ..., n.

Let N+ denote the pseudoinverse with dimensions n×r of the matrix N. The matrix M :=N+.N is a linear 

projection from ℝn to the subspace in ℝn spanned by the row vectors in N = nullspace(V ). A projection 

means that any eigenvalue of M is equal to either 1 or 0. The projection to the subspace is independent of 

the choice of vectors that span the subspace, i.e. M = (A.N)+.(A.N) for any invertible matrix A of dimensions 

r×r .

We consider a vector α ∈ ℝn that is subject to the projection by matrix M

(4) w
˜
=α.M 

The vector α represents target weights since the projection yields w
˜ ∈ ℝn in the subspace spanned by N 

closest to α that also satisfies (2). If ∑i=1
n w

˜
i ≠ 0, we obtain the vector of coordinates w ∈ ℝn that additionally 

satisfies (1) using scaling

(5) w =
1

∑i=1
n w

˜
i
w
˜

 

The degree of freedom is in the design of target weights α ∈ ℝn. If the construction of α is biinvariant, the 

resulting generalized barycentric coordinate w in (5) is also biinvariant.

Remark: The choice of α = (1, ..., 1) for all x ∈G results in biinvariant generalized barycentric coordinates 

for an arbitrary Lie group G that we call affine coordinates in the spirit of [2011 Waldron]. These coordinates 

generally do not satisfy the Lagrange property. ◼
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Lagrange Property

Remark: If G is equipped with a biinvariant metric d : G×G →ℝ that measures distance between two points, 

then the projection of the target weights αi = 1d(x, pi)
β for i = 1, ..., n and β ≥ 1 followed by normalization 

result in biinvariant generalized barycentric coordinates, which we refer to as inverse distance coordinates 

that satisfy the Lagrange property. This approach is not universal, because a biinvariant metric does not 

exist on every Lie group, for instance on the special Euclidean group SE(d) for d ≥ 2. ◼
The challenge is to define target weights α ∈ ℝn similar to the inverse distance but using terms that are 

biinvariant, and apply to any Lie group G, and therefore do not rely on the existence of a biinvariant metric. 

Our solution to the design problem only employs the matrix M, which is biinvariant: We define the target 

weights as

αi = 1 / || zi ||
β for i = 1, ..., n,

where the vector zi ∈ ℝn is defined as zi := (δi,j -Mi,j : j = 1, ..., n), i.e. zi is the i-th row of the matrix I -M. 

|| z || denotes the Euclidean norm, i.e. the 2-norm of a vector z ∈ ℝn. The exponent β ≥ 1 is chosen typically 

as β = 1 for linear-like interpolation, or β = 2 for smooth interpolation.

We argue that the coordinates cP(x) =w satisfy (3) as x approaches a point pi from the input set. As x → pi, 

the n×n projection matrix M converges to have entries Mi,j =Mj,i = δi,j for j = 1, ..., n. That means, the entry 

αi that tends to infinity as zi → 0, while αj for j ≠ i stays bounded, only manifests itself in the entry w
˜

i in (4). 

The normalization in (5) results in the convergence of w to the unit vector ei := (δi,j : j = 1, ..., n) thereby 

establishing the Lagrange property.

The construction is well-defined for any x ∈G that results in α <∞ and ∑i=1
n w

˜
i ≠ 0.

Remark: Any Lie group G can be equipped with a left-invariant metric dL : G×G →ℝ that defines the dis-

tance between two points. Then, the projection of the inverse distance weights αi = 1dL(x, pi)
β followed by 

normalization result in left-invariant generalized barycentric coordinates that are generally not biinvariant, 

but satisfy the Lagrange property. ◼

Implementation

The implementations below are for the Lie group ℝd in Mathematica.

Shepard[β_]points_, x_ := ModuleVt = # - x & /@ points, α,
α = 1 / (Norm /@ Vt)^β;
Normalizeα, Total

IDC[β_]points_, x_ := ModuleVt = # - x & /@ points, α, Ν, M,
Ν = NullSpace[Transpose[Vt]]; M = PseudoInverse[Ν].Ν;
α = 1 / (Norm /@ Vt)^β;
Normalizeα.M, Total

BIC[β_]points_, x_ := ModuleVt = # - x & /@ points, α, Ν, M,
Ν = NullSpace[Transpose[Vt]]; M = PseudoInverse[Ν].Ν;
α = 1  Norm /@ IdentityMatrixLengthpoints - M^β;
Normalizeα.M, Total

The examples in the next section were generated using the open source, non-linear geometry software 

library sophus. The library implements biinvariant coordinates cP and weighted averages μP for the Lie 

groups ℝd, SO(3), ST(d), He(d), SE(2), SE(2), SE(3), and the homogeneous spaces Sd, Sym+(d). Inverse 

distance coordinates are available for ℝd, SO(3), and Sd, Sym+(d).

Examples

For the 1-dimensional Lie groups ℝ1 and SO(2), we found that inverse distance coordinates and biinvariant 

coordinates are identical.

4     20200229_biinvariant_generalized_barycentric_coordinates.nb



ℝ1

Example: For set of points P = {-1, 0, 1} in the group (ℝ, +), Mathematica yields cP : ℝ→ℝ3 as

-1.0 -0.5 0.5 1.0
x

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

β=1

-1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

β=2

cP(x) =
1

2

1 - x +
x4-1

1-x2+2 x +3 x 3

2-2 x4

1-x2+2 x +3 x 3

1 + x +
x4-1

1-x2+2 x +3 x 3

 for β = 1, and cP(x) =
1

2+18 x4

x(1 - x) -1 + 9 x3
2 - 2 x2

x (1 + x) 1 + 9 x3
 for β = 2. ◼

S
1

Example: The 1-dimensional Lie group of rotations in the plane SO(2) can be identified with the 1-dimen-

sional sphere S1. Each illustration below shows a set of anchor points {pi} on S1 with associated real values 

qi ∈ ℝ indicated in normal direction. β = 1 in the top row, and β = 2 in the bottom row.

The graph of the function cP ∘μQ : S1 →ℝ is plotted as the blue line. Discontinuities are obvious when the 

points pi are not distributed well across S1. ◼
The characteristics of discontinuities was also noticed by [2013 Panozzo et al.] for coordinates on surface 

meshes, who address the issue as: “We leave it up to the user to ensure that there are enough close-by 

anchors; our experiments show that this is not difficult.”

ℝ2

 

Figure: A set of 11 points pi ∈ ℝ2 in the plane and a generalized barycentric coordinate w ∈ ℝ11 that yields 

the weighted average indicated in green. ◼
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Example: Let p1 = (0.1, 0.1), p2 = (0.8, 0.2), p3 = (0.9, 0.7), p4 = (0.6, 0.5), p5 = (0.3, 0.9), p6 = (0.1, 0.7) with 

pi ∈ ℝ2. We show approximate contour plots of the basis functions wi for i = 1, ..., 6 evaluated over the unit 

square. Inverse distance coordinates with β = 2:

Biinvariant coordinates with β = 2:

At the coordinate x = (0.3, 0.4) for instance, the inverse distance coordinate evaluates to 

wIDC ≈ (0.339, 0.097, -0.037, 0.3, 0.059, 0.242), the biinvariant coordinate evaluates to 

wBIC ≈ (0.352, 0.054, -0.041, 0.367, 0.057, 0.211). ◼

    

Figure: The left image shows the square domain D = [0, 1]2 ⊂ℝ2 with a set of n = 7 anchor points {pi}. Each 

point pi has an associated target location qi ∈ ℝ2. The images to the right visualize the image of D using 

different deformation functions: Shepard’s inverse distance weights, moving least squares with Shepard’s 

inverse distance weights, inverse distance coordinates, and biinvariant coordinates, each with exponent 

β = 2. In the two latter cases, the deformation is the concatenation cP ∘μQ : D →ℝ2. ◼
[2006 Scott Schaefer, Travis McPhail, Joe Warren] and [2016 Olga Sorkine-Hornung, Michael Rabinovich] 

are references for the moving least squares deformation method in ℝd.

S
2

The 2-dimensional sphere S2 =SO(3) /SO(2) is not a Lie group, but a homogeneous space. [2005 Scott 

Schaefer, Ron Goldman] state the functions exp and log on Sd.

  

Figure: Three examples of a set of points on S2 with generalized barycentric coordinate that yields in the 

weighted average indicated in green. ◼
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Example: We place 6 anchor points on the 2-dimensional sphere of which p1, p2, p3 are located on the front 

hemisphere, and p4, p5, p6 are on the back-side:

From the points P = {pi} we compute the following generalized barycentric coordinate functions cP : S2 →ℝ6

inverse distance coordinates:

biinvariant coordinates:

using β = 2. The 6 orbs on the top row show the respective coordinate of cP evaluated on the front hemi-

sphere. The orbs on the bottom row show the coordinates of cP evaluated on the back hemisphere. ◼

Figure: Deformation of a “square” domain on S2. Left shows the neutral configuration with anchor points 

pi ∈S2 for i = 1, ..., 6. Then: Deformation induced by Shepard’s inverse distance weighting, affine coordi-

nates, inverse distance coordinates, and biinvariant coordinates using the mapping μQ for target points 

qi ∈S2. The last two deformation methods are iterpolatory μQ(cP(pi) = qi for i = 1, ..., n because the coordi-

nates satisfy the Lagrange property. ◼

SE(2)

The 3-dimensional Lie group of orientation preserving, rigid transformations of the 2-dimensional plane is 

the special Euclidean group SE(2). A point in the group is represented by a triple (px, py, θ), where 

(px, py) ∈ ℝ2 represents a location in the plane, and θ ∈ [-π, π) an orientation. We visualize such a triple by 

an arrowhead. The covering group of SE(2) is denoted SE(2) and accounts for windings in the orientation. In 

SE(2) the angular component is any real number θ ∈ ℝ. A biinvariant metric does not exist on SE(2) or 

SE(2). The explicit formulas for the group action, inverse, exp and log are stated in [2018 Hakenberg].
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Figure: Points p1, ..., p7 from the Lie group SE(2) are mapped to their average x (in green) according to 

weights wi ∈ ℝ associated to each point pi for i = 1, ..., n. The right figure shows the points qi := g.pi.h for 

i = 1, ..., 7 that are the result of transformation by left-action and right-action for some g, h ∈SE(2). Due to 

the biinvariance property of the weighted average, the biinvariant mean of the transformed points is g.x.h. 

The biinvariant coordinates obtained in both cases are identical, i.e. w = cP(x) = cQ(g.x.h). A dashed line 

indicates a geodesic SE(2) projected to the xy-plane. ◼

    

Figure: The graphics compare inverse distance coordinates (left) and biinvariant coordinates (right) with 

β = 2 for an input set of n = 5 points pi = (pxi, pyi) in ℝ2, that have associated values qi = (pxi, pyi, θi) in the 3-

dimensional Lie group SE(2). The coordinates are evaluated over a rectangular domain D ⊂ℝ2 and mapped 

into the Lie group SE(2) using the concatenation of cP : ℝ2 →ℝ5 and the weighted average μQ in SE(2). ◼

Sym+(2)

[2007 P. Thomas Fletcher, Sarang Joshi] and [2020 Xavier Pennec, Stefan Sommer, Tom Fletcher] state 

formulas for exp, log, and distance in the homogeneous space of positive symmetric definite matrices 

Sym+(d). The space Sym+(2) is 3-dimensional.

Figure: Visualization of the identity cP(μP(x)) = x for a set of points P = {pi} and x (in green) in Sym+(2). The 

2×2 matrices are represented by ellipses as is common for covariance matrices. ◼
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Conclusion

We have constructed biinvariant generalized barycentric coordinates that satisfy the Lagrange property on 

an arbitrary Lie group G. The construction of the function cP depends on the choice of an exponent β.

Given a set of tuples {(pi, qi) : i = 1, ..., n} with pi ∈ G, and qi ∈H, the coordinates cP, and a weighted aver-

age μQ in the space H. Then, the concatenation cP ∘μQ : G →H is a biinvariant function that interpolates the 

data points, i.e. μQ(cP(pi)) = qi for all i = 1, ..., n, as was illustrated in several examples.

[2012 Pennec/Arsigny] show that the biinvariant mean can always be obtained using an iterative fixed-point 

algorithm. This approach is in fact necessary in the case of SO(3) and SE(3) for instance. In contrast, for 

some groups such as He(d), and SE(2), equation (2) reduces to a system of linear equations. The computa-

tion of the biinvariant generalized barycentric coordinate cP(x) = w that we propose in this article requires the 

computation of the logarithm in vi := logx(pi) for i = 1, ..., n, the nullspace N = nullspace(V ), and the pseudoin-

verse of N regardless of the Lie group.

Our construction of coordinates also applies to the homogeneous spaces Sd, and Sym+(d). On a homoge-

neous space, the barycentric equation is written as

∑i=1
n wi logx(pi) = 0.

Future work

The construction of biinvariant generalized barycentric coordinates for Lie groups is not unique but depends 

on design choices. For instance, the target weights proposed in this article generally do not yield back 

cP(μP(w)) ≠ w for the special weight vector wi = 1 /n for i = 1, ..., n.

[2012 Pennec/Arsigny] prove the uniqueness of the solution to the barycentric equation on Lie groups and 

show that the solution is biinvariant. Weighted averages on homogeneous spaces seem to have eluded 

investigation so far. Is the solution to the barycentric equation on a homogeneous space always unique and 

biinvariant?

We plan to investigate applications of biinvariant generalized barycentric coordinates on the Lie groups 

SE(2) and SE(3) in the field of robotics.
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