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Figure: Basis functions of inverse distance weighting, affine coordinates, and inverse distance coordinates 

for an example set of six points in the plane. ◼
Abstract: We present meshfree generalized barycentric coordinates for scattered sets of points in d-dimen-

sional vector space. The coordinates satisfy the Lagrange property. Our derivation is based on the projec-

tion of Shepard’s popular inverse distance weights to their best fit in the subspace of coordinates with linear 

reproduction. The notion of distance between a pair of points is sufficient for the construction of coordinates.
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Introduction

Given a set of pairwise distinct points p1, p2, ..., pn ∈ ℝd with n > d, we construct a generalized barycentric 

coordinate w ∈ ℝn that depends on a choice of vector norm in ℝd and the location of evaluation x ∈ ℝd. By 

construction the coordinate w shall satisfy the following properties with respect to x

(1) ∑i=1
n wi = 1  (partition of unity)

∑i=1
n pi wi = x (linear reproduction)

We shift the points pi so that “x becomes the origin” using the translation vi := pi - x for i = 1, 2, ..., n that 

results in the equivalent condition

(2) ∑i=1
n vi wi = 0 (linear reproduction)

At the isolated parameters x = pi for i = 1, ..., n from the input set our construction satisfies

(3) x = pi    ⇒    wj =  1 i = j

0 else
  (Lagrange property)

Related work

[1968 Donald Shepard] introduced inverse distance weighting for the interpolation of irregularly-spaced 

data. His method does not reproduce linear polynomials. Our approach projects the inverse distance 

weights of Shepard’s method to the closest solution of (2) in the least-square sense.

[2011 Shayne Waldron] derives affine coordinates that satisfy (2), but do not have the Lagrange property. 

Waldron’s approach selects the arithmetic mean m = (1 /n)∑i=1
n pi of the set of input points as the fixed 

reference for the best fit to coordinates with linear reproduction. Affine coordinates require the computation 

of a pseudoinverse matrix only once for a given set of points. In contrast, the inverse distance coordinates 

presented in this article require a best fit at every parameter x and therefore involve the computation of 

nullspace and pseudoinverse at every evaluation.



The book [2016 Hormann, Sukumar] lists two additional generalized barycentric coordinates for scattered 

sets of points: Sibson coordinates and Laplace coordinates, see Sections 1.2.12 and 1.2.13 in the book. 

Both methods involve the construction of Voronoi cells and are at most C1. Sibson coordinates rely on the 

notion of area, or volume.

Construction

We state the derivation of the new coordinates that were coined Inverse Distance Coordinates by Kai 

Hormann upon reviewing an early version of this article.

Any non-zero vector from the nullspace of the matrix V = [v1, ..., vn] of dimensions d×n that may be normal-

ized to sum up to 1 produces a solution to (1) and (2).

Denote with N = nullspace(V ) the matrix of dimensions r×n with row vectors that span the nullspace of V , 

i.e. that satisfies V .NT = 0. The nullspace is non-trivial because n > d implies r > 0.

The best fit w
˜ ∈ ℝn in the least-square sense to target weights α ∈ ℝn that also satisfies (2) is the vector

(4) w
˜
=α.N+.N 

where N+ denotes the pseudoinverse of N with dimensions n×r.

If ∑i=1
n w

˜
i ≠ 0, we obtain the vector of coordinates w ∈ ℝn that additionally satisfies (1) using scaling

(5) w =
1

∑i=1
n w

˜
i
w
˜

 

The degree of freedom is in the design of target weights α ∈ ℝn that ensure the convergence of coordinates 

w to satisfy (3) as x approaches a point pi from the input set.

A straight forward choice for α ∈ ℝn is the vector of inverse distances between pi and x, or equivalently the 

inverse norms of vi

αi := 1 / || pi - x || = 1 / || vi || for i = 1, ..., n,

which is well-defined if x ≠ pi for all i = 1, ..., n. || vi || denotes the Euclidean norm, i.e. 2-norm of the vector 

vi ∈ ℝd.

As x → pi, the n×n projection matrix M :=N+.N in (4) converges to have entries Mi,j =Mj,i = δi,j for j = 1, ..., n. 

That means, the entry αi that tends to infinity as vi → 0 only manifests itself in the entry w
˜

i in (4). The normal-

ization in (5) results in the convergence of w to the unit vector ei thereby establishing the Lagrange property.

The construction is well-defined for any x that results in α <∞ and ∑i=1
n w

˜
i ≠ 0. The coordinates w are C∞ 

around such points x, since the construction consists of smooth operations entirely.

Remark: The design of other non-zero target weights α is subject to future work. ◼

Implementa�on and Results

The implementations in Mathematica illustrate the similarities between inverse distance weighting, affine 

coordinates, and inverse distance coordinates:

Shepardpoints_, x_ := ModuleVt = # - x & /@ points, α,
α = 1 / Norm /@ Vt;

Normalizeα, Total

Waldronpoints_, x_ := Modulem = Meanpoints, Vt,
Vt = # - m & /@ points;

(x - m).PseudoInverse[Vt] + 1  Lengthpoints

IDCpoints_, x_ := ModuleVt = # - x & /@ points, α, Ν,
α = 1 / Norm /@ Vt;

Ν = NullSpace[Transpose[Vt]];

Normalizeα.PseudoInverse[Ν].Ν, Total

Example: Let p1 = (0.1, 0.1), p2 = (0.8, 0.2), p3 = (0.9, 0.7), p4 = (0.6, 0.5), p5 = (0.3, 0.9), p6 = (0.1, 0.7), and 

x = (0.3, 0.4). The inverse distance weights evaluate to wIDW ≈ (0.197, 0.132, 0.106, 0.225, 0.142, 0.197). 
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The affine coordinate is wAC ≈ (0.368, 0.152, 0.003, 0.134, 0.119, 0.223). The inverse distance coordinate 

evaluates to wIDC ≈ (0.350, 0.126, -0.022, 0.223, 0.089, 0.234).

Figure: Approximate contour plots of the basis functions wi for i = 1, ..., 6 and the point set from the exam-

ple evaluated over the unit square. From top to bottom: Inverse distance weighting, affine coordinates, and 

inverse distance coordinates. ◼

 

Figure: The graphics show the evaluation of inverse distance coordinates for input sets of points 

pi = (pxi, pyi) from the plane for n = 3, 4, 5, 6, respectively, that have associated values in the 3-dimensional 

Lie group SE(2) of the form (pxi, pyi, θi). The coordinates are evaluated over a rectangular domain that 

covers the point sets and mapped into the Lie group using the formulas derived in [2006 Arsigny, Pennec, 

Ayache]. Elements from SE(2) are plotted as arrowheads. ◼
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