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Animation of Skeletons with Hinges and Spherical Joints

A derivation by Jan Hakenberg dedicated to Nikolai Sperling.

Abstract: We derive an algorithm to animate a skeleton of rigid bodies that are linked by hinges and spherical joints.
Over the course of the simulation, the total linear momentum, and the total angular momentum are invariant. If desired,
the algorithm incorporates intrinsic torques of the joints such as friction, and motor control. Otherwise, the total kinetic
energy isinvariant, too.
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m Typesof joints

We intend to animate skeletons of rigid bodies that are linked by any combination of hinges and spherical joints. A
hinge has a distinct axis of rotation, around which the attached bodies rotate relative to each other. Therefore, we
visualize a hinge by acylinder. The levers of aspherical joint are free to revolve around any axis relative to each other.
We represent a spherical joint by a sphere.

spherical joint

Our article starts by considering skeletons with hinges only. However, the introduction of spherical joints turns out to
be simple at alater point: the vector that formerly represented the axis of ahingeisjust set to zero.

= Topology of the skeleton

The skeleton shall consist of n+ 1 rigid bodies that are pairwise linked by n hinges. (Later, any hinge can be replaced
by a spherical joint.) The topology of the skeleton resembles atree, i.e. a connected graph with no circles. We enumer -
ate the bodies with theindex i = 1, 2, ..., n+ 1, and we enumerate the hingesusing j = 1, 2, ..., n. The connectivity of
the skeleton is encoded in the (n, 2)-matrix E, where row j of E contains the indices of the two bodies connected by
hinge j. From E we construct the (n, n + 1)-matrix o with entries as

-1 fori=E(}, 2

+1 fori=E(j, 1
Tji = {
0 otherwise
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Example: The skeleton depicted above serves as an example throughout the document. The skeleton consists of 3
bodies and n = 2 hinges. Using the indexing as in the graphics, the topology is encoded by

. ) 1-1 0
‘(2 3) an ‘T‘(o 1 —1}

m Generic equations of motion

The state of thebody i = 1, 2, ..., n+ 1 isdefined by the following variables:

pi center of massin world coordinates  (3)-vector

R orientation transforming from object to world coordinates « orthogonal (3,3)-matrix
\ linear velocity in world coordinates « (3)-vector

wj angular velocity in object coordinates ¢ (3)-vector

i inertiatensor ¢ constant symmetric (3,3)-matrix
m mass ¢ constant real value, greater than zero

The dynamics of each body i are determined by

g linear acceleration in world coordinates « (3)-vector
Tj torque in object coordinates ¢ (3)-vector

The entities p;, R, vi, wi, &, 7i depend on timet, while the inertiaand mass |;, m; are assumed to be constant. The linear
motion results from the differential equations

g vi = &
depi =V

The angular motion is governed by the differential equations

t wj = Ii_l-(_ﬂi-li-wi +7i)

&R =R.Q

where Q) is a skew-symmetric (3,3)-matrix composed of the three entries of w as

0 —Ww3 Wy
Q=] w3 0 -w ]
—W2 W1 0

Example: In theillustrations, the ellipsoids visualize the inertia tensor |;. The extensions of the shape correspond to the
three eigenvalues of ;. The center of mass p; islocated in the center of the ellipsoid.
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= Constraints by hinges

The location and alignment of the hinge j = 1, 2, ..., nis constant with respect to the two bodies E(j, 1), and E(j, 2),
the hinge connects. We define

il location of hinge j in object coordinates of body E(j, 1) * constant (3)-vector
[ i2 location of hinge j in object coordinates of body E(j, 2) * constant (3)-vector

and

zj1  axisof hinge j in object coordinates of body E(j, 1) « constant (3)-vector of norm 1
zj»  axisof hinge j in object coordinates of body E(j, 2) * constant (3)-vector of norm 1

For the purpose of enumeration, we define additional vectorsl;; fori=1, 2, .., n+1lvia

~

ljp fori=E(j, 1 2j; fori=E(j, 1)
lii =1 1,2 fori=E(j,2 zj,i={zj,z fori = E(j, 2)
0 otherwise 0 otherwise
220,

Example: For joint j = 2 of the skeleton depicted above, we have I, =0, but 1,5 = Tz,l, and I3 = IAg,g. Analogous,
1= 0, but 2o = 22’1, and 3= 22’2. [ ]

Henceforth, we use the shorthand j1 = E(j, 1) and j2 = E(j, 2). For instance, pj1 = Pg(j,y and zjj2 = Zj g2 The
hinges shall not separate over the course of the simulation. At any time t, we demand

(1) pjl + le-lj,jl = pj2 + Rj2-|j,j2 for j = 1, 2, ., N
le-zj,jl = Rjg.ZJ‘,jz

The time derivatives d; of these equations are

@ Vit + RpQjudjjn = Via + Ria. Qa2 fori=12 -.n
le--le-Zj,jl = RjZ-QjZ-Zj,jZ

Finally, another application of d; yields the relations

(3) a1 + le-ﬂjl--o-jl-lj,jl - le-l—j,jl-dt wj1 = g2 + RjZ-QjZ--QjZ-Ij,jZ - Rj2-|—j,j2-dt wj2 for j =12, ..,n
le.ﬂjl.ﬂjl.zj,jl - le-zj,jl-dt wj1 = Rjz.ﬂjz.ﬂjz.zj'yjz - Rjz-zj,jz-dt wj2

where we have substituted the cross product by vector |;, z;; with the skew-symmetric (3,3)-matrix L;;, Z;; composed
as
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0 -z i, 0 -zi; 7z,

Lii=| liz 0O —lji and Zii=| ziz 0 -z

“lji, iy O ~Zjj, Zjj; 0

Therdations (1), and (2) are meaningful constraints on the initial configuration of the skeleton: the animation launches
with the hinges touching and well aligned, and not about to be torn apart. From (3), we derive linear accelerations and
torques on the n + 1 bodies that ensure (1) and (2) over the course of the animation.

= Dynamic impact at hinges

To model friction and motor control at joint j, we introduce
g intrinsic torque at joint j in world coordinates ¢ (3)-vector

If joint j revolvesfrictionless and passively, we set ej = 0. In general, we propose the expression
€j = —uj [Rjz.wj1 — Rjp.wj2] + B Ri1.Zj j1

where uj = 0 isthe friction coefficient, and §; isthe torque of the motor attached to hinge j.

In each timestep, we compute (3)-vectors ¢;, d; in world coordinates for al hinges j = 1, 2, ..., n. The vectors ¢;, d;
shall contribute to the linear accelerations and torques of the two bodies j1 = E(j, 1), and j2 = E(j, 2), that share the
joint j. To preserve the total linear and angular momentum, the contribution is with alternating signs as

aj1 +=mj; g forj=1,2 ..,n
3 == M ¢

and

Tj1 += Ljyjl.le_l.Cj + Zj'jl.le_l.dj + le‘l.ej forj=1,2, ..,n
-1 -1 -1
Tj2 —= Lj,jZ-RjZ Cj + Zj,jZ-RjZ .dj + Rj2 -€j

In total, the body i is subject to alinear acceleration & and torque 7; of

(4) a=m1 I 0 Cj fori=1,2, ...,n+1

Ti = E?:j_ O'J',i(Lj,i.Rfl.Cj + Zj’i.Rfl.dj + Rfl.ej)

da

c1

Example: The linear accelerations and torques of the four bodies in the skeleton above are of the form

a = m1‘1(+cl) T1 = +L1V1.R1_1.C1 + Zlyl.Rl_l.dl + Rl_l.e]_
ady = mz_l(—C]_ +C) 1= —lez.Rg_l.Cl - Zlyz.Rg_l.dl - Rz_l.e]_ + L2’2.R2_1.C2 + Zzyg.Rz_l.dz + Rg_l.ez
ag = mS_l(_CZ) T3 = —L2'3.R3_1.C2 - Zz’g.Rg_l.dz - Rg_l.e‘z
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Theorem: The linear acceleration a and torque 7j for i =1, 2, ..., n+ 1 as assigned in equations (4) result in the
conservation of the total linear momentum, and total angular momentum of the skeleton. If all joints revolve friction-
lessand passively,i.e.ej = 0fordl j=1, 2, ..., n, thetotal kinetic energy isinvariant, too.

Proof. The assignments (4) annihilate the time derivative d; of the total linear momentum
T mya = I m m 2 0 ¢ = 21 I 0 6 = 2]y 6 - I, ¢ =0
and also the derivative d; of the total angular momentum

I pix (m &) + R.Qidiwi + RO w;
= I px (@) + R biwi + Rl + 7))
= I px(ma) + Ry
= er]:l pj1XCj + le.[lj‘j]_X(le_l.Cj) + Zj‘j]_X(le_l.dj) + le‘l.ej] -
Pj2 X Cj — Rjz.[lj’jzx (Rjz_l.Cj) +Zjj2 X (Rjz_l.dj) + Rjz_l.ej]
= Z?:l Pj1 XCj + (le-lj,jl) XCj— Pj2XCj — (RjZ-Ij,jZ) XCj+ (le-zj,jl - RjZ-Zj,jZ)de +€j — €
= Z?:l( Pj1 + le-lj,jl = Pj2— RjZ-lj,jZ) XCj+ Ode +0
=2, 0x¢j
=0

making use of the relation Q.[ax (Q1.b)] = (Q.a) x b for any (3)-vectors a, b and orthogonal (3,3)-matrix Q. The
derivative d; of the total kinetic energy simplifiesto

I m v+ wili o wi

=3I mm o v + widi i (= hw + o L RTNe + 0 Z R + o RV ey)

= I 20y 0 vilCj — wi i diwi + 0w L RTLG + 0 wi Zj RN + o . R ey

=L I ol +oi.Lji R7C + 0 dj.R.Qi.Zjj + 0 €. R.wi

= Zalvin + RinQjljja = Via = Rz Qj2.l jol € + dj.[Rin. Q417 j1 = Ri2.0j2.7) jo] + €}.[Rin.wjs = Ria.wje]
= Z?:j_ 0.cj +d; .0+ &j.[Rj1.wj1 — Riz.wj2]

= Z?:j_ ej.[le.wjl — Rjz.a)jz]
because wi.Q =wixw; =0, wi.Lj;.R™=-R.Ljjwi=R.0Ql; andogous, i.Zj;R'=R.Q.z;,
Il o =01+ 0 j2, and equations (2). If ey = 0foral j=1, 2, ..., n, thetotal kinetic energy isinvariant. m
Remark: Each conservation law is granted by a different argument:

total linear momentum: topology ojjL+07ji2=0
total angular momentum: positionof joint equations (1)
total kineticenergy : velocity of joint  equations (2)

At this point, the remaining issue is the computation of the vectors c;, d; for j =1, 2, ..., n. To solve for these 6n
unknowns, we substitute the terms (4) into equations (3). The vectors ¢;, d; are determined by alinear system of
equations.

We convert the terms (4) into the notation of equations (3): From a; = my~2 Il ojicj, weyield

a1 =m0 owjr G forj=1,2, ..,n
ajp =M LI oo Gk
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Further, we substitute 7; =", oi[L;;.R ™ .cj+Z;;.R"".d;+ R .ej] into the differentia equation
dwi = |i_l.(—ﬂi.|i.a)i + 1j) and yield

ok wj1 = |j1_l.(—ﬂj1.|j1.w]‘1 + 20 U'k,jl[Lk,jl-le_l-Ck + Zk'jl.le_l.dk + le_l.ad) forj=1,2, ..,n
o wj2 = |j2_1.(—ﬂj2.|j2.w]‘2 + ZE:l Ukng[kajz.Rjz_l.Ck + Zk'jz.Rjz_l.dk + Rjz_l.a(])

The substitution of &1, and d; wj, into the Ihs of the equations (3) resultsin

(mjl‘l 2 Okj1 Ck) + le--le--le-lj,jl - le-Lj,jl-ljl_l-(_le-Ijl-U)jl + Xk Uk,jl[Lk,jl-le_l-Ck + Zk’jl.le_l.dk + le_l.a(])
= (mj(l Xk Ok,j1 Cy) + le-ﬂjl-ﬂjl-lj,jl + le-l—j,jl-ljl_l--le-Ijl-‘Ujl -
le.Ljylejl_l.Zk O'k,jl[Lk,jl-le_l-Ck + Zkyjl.le_l.dk + le_l.@]
=2 Ok,j1 ([m,-l‘l 1- le-l—j,jl-Ijl_l-Lk,jl-le_l]-Ck - le.Lj’jl.|j1_1.Zk’j1.le_l.dk - le.Lj,jl.Ijl‘l.le‘l.eK)] +
le--le--le-Ij,jl + le.Lj’j]_.|j1_l.ﬂj1.|j1.w]‘1

and secondly

Ri1.0Qj1.0j1.2j 1 - le.Zj’jl.ljlfl.(—.leJjl.a)jl + 2k O’k’jl[Lk'jl.lefl.Ck + Zk’jl.lefl.dk + le’l.eK])

= le-le-le-Zj,jl + le-zj,jl-ljl_l-njl-ljl-wjl - le.Zj’lejl_l.Zk O'k,jl[Lk,jl-le_l-Ck + Zk'jl.le_l.dk + le‘l.a(]

= [Zk O_k,jl(_ le-zj,jl-Ijl_l-Lk,jl-le_l-Ck - le.Zj’lejl_l.zk’jl.le_l.dk - le.ijjl.|j1_1.Rj1_1.eK)] +
le.ﬂjl.ﬂjl.zj,jl + le-zj,jl-Ijl_l-ﬂjl-ljl-wjl

with 1 as the identity (3,3)-matrix. Analogous, the substitution of a;,, and d; wj, into the rhs of (3) resultsin

[Zk ok jo ([mjz_l 1- Rjz.Lj'szjzfl.Lk'jz.Rjzfl].Ck - Rjz.Lj,jz.|j271.zk'1‘2.Rj271.dk - Rjz.Lj'szjzfl.Rjzfl.Q()] +
RjZ-QjZ-QjZ-Ij,jZ + RjZ-Lj,j2-|j2_1-Qj2-|j2-(Uj2

and secondly

[Z O'k,jZ([_ Rjz.Lj’jz.|j2_1.Lk’j2.Rj2_l].Ck - Rjz.Zj’jz.|j2_1.Zk’j2.Rjz_l.dk - Rjz.Zj'j2.|jz_l.Rjz_l.Q()] +
Ri2.Qj2.022.2j o + Rjg.Zj,jz.|j2_1.ﬂj2.|jg.wj2

For j, k=1, 2, ..., n, we define (6,6)-matrices

) A [ le.Lj’jl.|j1_l.Lk’j1.le_l - mjl‘l 1 le-Lj,jl-Ijl_l-zk,jl-le_l )
jk1=Okj1

1 1 1 1
le.Zj’lejl -Lk,jl-le le-zj,jl-ljl -Zk,jl-le
1 ) - -1 1
A Rjz.Lj’jg.h'z .Lk’jz.Rjz — M2 11 Rj2-|—j,j2-|j2 .Zk’jg.Rjg
k2= 0kj2 -1 -1 -1 -1
RjZ-Zj,jZ-IjZ -Lk,jZ-RjZ Rjz-zj,j2-|j2 -Zk,jZ-RjZ

and (6)-vectors

-1 -1 -1
b ( le-le-le-Ij,jl+ le-l—j,jl-ljl -le-ljl-wjl_zko-k,jl le-l—j,jl-ljl .le S
1= -1 1p -1
le.le.le.zj,j1+ le-zj,jl-ljl .le.|j1.wj1—2k Ok,j1 le-zj,jl-ljl .le 6
-1 -1 -1
Rj2--Qj2--Qj2-|j,j2+ Rj2-|—j,j2-|j2 .Qj2.|j2.w]‘2—zk Ok,j2 Rj2-|—j,j2-|12 -Rj2 NSH

2= -1 1p -1 ]
[ RjZ-QjZ--QjZ-Zj,jZ + RjZ-Zj,jZ-IjZ .sz.|j2.a)j2 — 2k Ok,j2 RjZ-Zj,jZ-IjZ -Rj2 6

C
Then, equations (3) transform into —[Zk Aj'kyl.( Zk )] +bj1=- [Zk Aj,kyz_( dk )] + bj 2, or equivalently
k k

Ck .
Zea(Ajka— Aj,k,z)-( dk) =Dbj1-Dbj» forj=1,2, ..,n
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= |ntroduction of spherical joints

To replace ahinge j by a spherical joint, we set the vector that represents the axis of the joint to zero, i.e. z;1 = 0 and
Zj» = 0. Consequently, zj; =Oforalli=1, 2, .., n+ 1. Theequations of (1), (2), (3) that involve z;; hold trivially.

Example: In theillustration below, joint j = 1isahinge, and joint j = 2 isaspherical joint. Therefore, we have 2,7 = 0
and 22’2 =0.

=1

= Algorithm for animation

We describe how to 'integrate’ the skeleton from time t over atime interval of length h > O to the next frame t + h. The
input to the algorithm are the entities p;, R, vi, wi, i, m, and L;;, Z;j;, €; for al bodiesi =1, 2, ..., n+ 1 and joints
i=1,2, .., nattimet, and the duration h. The values shall comply with the initial conditions (1) and (2). We deter-
mine the vectors ¢, d; by solving the system of linear equations

C1
Ar11—Ar12 - Aint—Aun2 ] d; [ b11 b2 ]

(6)

Cnh bn1—bn2
dn

An11—An12 - Aani—Ann2

Theterms Ajx 1, Ajk2, bj.1, and b, are defined in (5). Then, the linear accelerations &, and the torques 7; are

a=m I, oy fori=1,2, ...,n+1

T = E?:j_ O'J"i(Lj’i.Ri_l.Cj + Zj'i.Ri_l.dj + R‘l.ej)

Wereassign
Vii=Vi+ah fori=1,2, ..,n+1
pii=pi+Vvih
wj = wj + |i_l.(—ﬂi.|i.wi +71)h
R = R.exp[Q; h]

The new values p;, R, Vi, w; represent the dynamic configuration of the skeleton at time t + h and are the output of the
agorithm. (The (3,3)-matrix exp[Q; h] = Z:;O Qi h)k /(k!) is orthogonal.)

Remark: Equation (6) contains 6 n unknowns: ¢;, d; for j = 1, 2, ..., n. However, the matrix is only of rank 5n + 3 s,
where ny, is the number of hinges, ns is the number of spherical joints, and ny + ns = n. If joint j isahinge, the vector dj
is constrained to the plane orthogonal to the axis of the hinge Rj1.zj; = Rj>.zp. If joint j isaspherical joint, then d; = 0.
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The solutions ¢;, d; of (6) are readily obtained via the pseudoinverse. An implementation of the singular value decompo-
sition is stated in the book Numerical Recipesin C++, 2nd edition written by Press, Teucholsky, Vetterling, Flannery.

Remark: The substitution of o j1 = dg(j,1),Ek,1) — OE(j,1,Ek.2), AN T j2 = O(j,2),Ek 1) — OF(j,2),Ek2 With

1 ifig =i,

Oivip = { 0 otherwise

transforms an entry of the block matrix of (6) into the alternate form

Ajki—Ajke=

o le.Lj'lejl_l.Lk'jl.le_l—mj1711 le.Lj'lejl_l.zk'jl.le_l
FODERD le.Zj'lejl_l.kajl.le_l le.ijjl.|j1_l.zkyj1.Rj1_1
5o le.Lj’lejl_l.Lk,jz.le_l—mjl_ll le.Lj’j1.|jl_l.zk’jz.le_l
FUDEk2 le.zl"jl.|jlfl.Lk'jz.lefl le.Zj'jl.|j171.zk'j2.Rj171
Se Rjz.Lj'sz1‘2_1.Lk1j1.Rj2_1—mj2711 Rjz.Lj'j2.|jz_l.zk'jl.Rjz_l
FU2ED Rjz.Zj'j2.|jz_l.Lk’jl.Rjz_l Rjz.Zj’jz.|j2_l.zk’j1.Rj2_1
Rjz.Lj’j2.|jz_l.Lk,jz.Rjz_l - mjg_l 1 Rjz.Lj’j2.|jz_l.zk’jz.Rjg_l

+0E(j,2.Ek2)
2).Ek, -1 -1 -1 -1
Rjz.zl"jz.h‘z -Lk,jZ-RjZ RjZ-Zj,jZ-IjZ -Zk,jZ-RjZ




