Tracking on Homogeneous Manifolds
to Andrew Ladd, who had motivated me to study Lie theory
by Jan Ph. Hakenberg!

Abstract. We present a computation to yield the transformation that matches best two given
sets of landmarks on a linearized homogeneous manifold. The method allows to restrict the
set of feasible transformations in a way that is most relevant in practical applications. If the
homogeneous manifold is a vector space, the resulting transformation is optimal in the limit.
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1 DMotivation

The following excerpt from a recent publication in computer graphics reflects the conception of
the tracking problem in engineering.

Quote 1.1. from [MHO05], Section 3.3: “Given two sets of points 2 and x;. Find the rotation
matrix R and the translation vectors ¢t and ty which minimize

Zwi(R(a}? —to) +t — x;)?,

where the w; are weights of individual points. In our case, the natural choice for the weights is
w; = m,;. The optimal translation vectors turn out to be the center of mass of the initial shape
and the center of mass of the actual shape, i.e.

0
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which is physically plausible. Finding the optimal rotation is slightly more involved. Let us
define the relative locations ¢; = x? — xgm and p; = x; — xem Of points with respect to their
center of mass and let us relax the problem of finding the optimal rotation matrix R to finding
the optimal linear transformation A. Now, the term to be minimized is Zz m;(Ag; —pi)2. Setting

the derivatives with respect to all coefficients of A to zero yields the optimal transformation
A= (Z mipiqiT)(Z mz’QiQiT)_l = ApgAgq-
i i

The second term Agy, is a symmetric matrix and, thus, contains only scaling but no rotation.
Therefore, the optimal rotation R is the rotational part of Ay, which can be found via a polar

decomposition A,, = RS, where the symmetric part is S = 4 /ququ and the rotational part is
R=A,,S71” &

The landmarks are points #¥ and z; in R?. We are looking for a transformation (R,t) in the
Euclidean group E3. The idea is to formulate the optimization problem on the homogeneous
manifold R? = E3/SO3. Elements of the group E3 act on R? via the left-action.
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2 Propaedeutic

The key ingredient of our tracking method is the Campbell-Baker-Hausdorff series on Lie alge-
bras. The series substitutes the action of a Lie group G with Lie algebra g in the vicinity of the
neutral element e € G via

o: G x G - G
| log | log T exp
Ocbh - @ X g — 98

If G is a group of matrices, then for a matrix ¢ € G sufficiently close to the identity matrix
e = I, and any matrix X € g, the functions log and exp are of the form

log(I +g) = g—%g.g—k%g.g.g—%g.g.g.g—i—...
exp X = I+ X+ 35X X+ HXXX+...

The Campbell-Baker-Hausdorff series ocp, @ g X g — g is universal for all Lie algebras, but
depends on the commutator tensor ad.z.y = [z,y] of g. In [HN91], we find

—1)k ad.zx)Pt.(ad.y)® ... (ad.x)Px.(ad.y)? (ad.z)™
oyt 3 (1) (ada)” (ad)? ... (s} (ad ) (o)
om0 (k+1(qr+...+q+1) AR ARERRY Al m!
Pitgi>0

The first terms of the series evaluate to

1 1 1 1
TOhhyY =2+ Y+ 7[a7>y] + 7[£U, [x,y]] + 7[y> [yvx]] +

2 12 12 vl [y alll +

Example 2.1. The Euclidean group G = Es is the semi-direct product of planar orientations
SO, and the vector space R2. The group is 3-dimensional. Elements g € G are commonly
parametrized using 3 x 3 homogeneous matrices with the parameters («, ps,py) for angle and
position. Then, the group action is matrix multiplication, and the neutral element is the identity
matrix.

The associated Lie algebra g = ¢2 is spanned by the matrices g = (X1, X2, X3) with the following
commutator tensor

Ll | X1 X2 X3

0 -1 0 00 1 00 0
X1 0 X3 —X,
Xi=]11 0 0 ],Xo=]10001],Xs=]001
Xo | —X3 0 0
0 0 0 00 0 00 0

X3 | Xo 0 0

For instance, [X1,X3] = X1.X3— X3.X1 = —Xo.

Any element of the group G is a matrix of the form exp ), 2; X; € Eo. While 21 € R is the angle
of rotation, xo,x3 € R define the amount of translation. The Campbell-Baker-Hausdorff series
Ocbh : § X g — @ approximates the combination of two transformations (z1,z2,23) o (y1,¥2,¥3)
by polynomials

o: expy . x;iX; X expyyiX;i — exp) . zX;
| log | log T exp

obh 1 (@1,%2,w3) X (y1,¥2,y3) — (21,22,23)



In the evaluation of the series up to order 3, the coefficients relate as

Z1 =21+
20 =m + Y2 + 3 (T3y1 — T1y3) — 75 (@1 — y1) (T1y2 — T21) + 552101 (T3y1 — T1Y3)
23 =23+ Y3+ % (T1y2 — 22y1) — % (1 — 1) (x1y3 — 2391) + ifvlyl (x1y2 — T231)

<&

Let H be a closed subgroup of G. Then, M = G/H is called a homogeneous manifold that comes
with two canonic mappings: The projection from G to M is given by 7 : G — M as g — gH.
For any element g € GG there exists a unique coset m = gH € M onto which g projects. The
left-action of G on M is 7 : G x M — M that maps (g9,qH) — {gogoh:he€ H} = gqH.

In practice, the left-action is carried out as

7: G x M — M

1 1d Lt Tr
o: G x G — G

However, the embedding ¢ : M — G is not canonical, and the group action o is rarely available
in a closed form expression.

To circumvent these difficulties, we implicitely parametrize G by the vector space g. For a
parametrization of M = G/H, we decompose g = h @ m. The Lie algebra h C g of H C G is
uniquely determined. The selection of a vector space complement m is simple in practice. The
Campbell-Baker-Hausdorff series oy, recreates the group action o, as well as the projection 7.
The previous diagram transcribes into

T: @ X m — m
1 1d le T
Ocbh - @ X g — 4

The embeddings ¢t : u — g, and ¢ : m — g are canonical. For a particular x € g the projection m
determines h € h with x o,y A € m. The projection 7 : g — m is usually non-linear.

Example 2.2. The Euclidean group E3 = SO3xR3 encodes orientation and position in 3d space.
The group is 6-dimensional. We state the standard representation of the elements g € G = Eg,
as well as the commutator relations of the Lie algebra g = (21, 22, x3, x4, 5, T6) as

Llg | 21 22 w3 x4 x5 g
T 0 I3 ) 0 T —I5

0 —x3 X9 Ty
To | —x3 0 r1 = —Tg 0 Ty

T3 0 —T1 X5
g = exp T3 X9 —T1 0 x5 —T4 0

—Ty X 0 Tg
T4 0 T —I5 0 0 0

0 0 0 0
I5 —Tg 0 T4 0 0 0
Te Is —T4 0 0 0 0

The vector (z1,z2,x3) is the axis of rotation, whereas (x4, x5, z¢) defines the amount of trans-
lation. The matrices of Eg are essential in today’s robotics, and computer graphics.



The linear subspace h = (z1, z2,x3) C g is closed with respect to the commutator. H = exph =
SO3 is a closed subgroup of G. The homogeneous manifold M = G/H is diffeomorphic to R3.

If we choose m = (x4, x5, x6), the Campbell-Baker-Hausdorff series approximates the projection

7 g — m with 7(z) = (m1, ma, ms) as

my = x4 + 5 (T2x6 — T3T5) (z1(z2xs + 2376) — Ta(23 + 23)) + 25 (2% + 23 + 23) (w325 — w2w6)

[\

+3 7 ) (

me = T5 + % (324 — T126) + % (xg(xgxg + x124) — 25(23 + x%)) + %1 (.13% + a3+ x%) (r116 — T314)
+ 14 )

3.

2

m3 =z + 3 (T125 — T224) (z3(@124 + T2w5) — 26(2] + 23)) + 57 (23 + 23 + 23) (2224 — 2125)

We state the approximation to the left-action 7 : g x m — m later in Example 3.4. <&

3 Tracking on Homogeneous Manifolds

We model the configuration space of a robot and the configuration space of a landmark perceived
by the robot in a single Lie group GG. The mobility of the robot is characterized by a subset
U C @G, which contains the neutral group element e € U. Any small change in configuration of
the robot is determined by an element u € U. If the robot is in configuration g € G, then after
a short lapse of time, the configuration is of the form g ou € GG. Let g be the Lie algebra of G.
There is a subspace u C g so that U C expu. We assume that the configuration space of the
landmark is the homogeneous manifold M = G/H where H is a closed subgroup of G.

In the following, we present a strategy to find a transition u € U of the robot that is consistent
with a given transition of a landmark m € M to m € M. We demand 7(u,m) = m. As an
application, the method could support or even replace the odometry calculation of a robot that
is provided with sensors to analyse and correlate the environment.

We implicitely parametrize G' by the vector space g, and M by m. We employ the Campbell-
Baker-Hausdorff series to approximate the mappings o, 7, 7. Now, the equation 7(u,m) = m is
with respect to the diagram

T: u X m — m
L b T
Ocbh - @ X g — ¢

Due to imperfections in the measurements, a perfect match 7(u,m) = m might not exist. A
metric d : m x m — Ry allows us to pick u € u so that d(7(u,7), m)? is minimal.

In practice, there is a number ¢ = 1,...,n of pairwise correlated landmarks available, where
m"’ € m moves to m* € m. We are interested in u € u that minimizes the sum of the squared
errors e(u) = Y. d(7(u,m?), m")2.

Remark 3.1. The algorithm requires some preparations: the commutator tensor ad of the Lie
algebra g, the decomposition g = h & m, the vectors that span u C g, and the metric d on m.
Then, the input to the method are the landmarks {m’, 7’ € m : i = 1,....,n}. The algorithm
outputs the change in configuration of the robot © € u. The corresponding transformation in
the Lie group is simply expu € U.

In practice, we construct d from a scalar product on m. We find that Newtons iteration u*t! =
uF — (d%e)~1.dye| x initialized with u® = 0 works fine in this case.

In the rare case that m = g, we yield the match simply via u = % > (mf ocpn —) |y &
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Figure 1: Set of landmarks perceived by moving train-like robot. Noise is added in the simulation
to the right.

Example 3.2. We consider a train-like robot that moves forward and backward on a straight
line. To the sides, there are landmarks m’ measured relative to the robot. Based on the
perception of the landmarks 7! after a short lapse of time, we wish to estimate the distance u
travelled by the robot.

The configuration space of the robot is R, while the configuration space of each landmark is
R2. Thus, we model the scenario in the Lie-group G = R2. The group action is simply vector
addition. The neutral element is e = (0,0).

We assume the robot moves along the zj-axis. Then, the mobility is U = {(z1,0) : 1 € R}.
Since the configuration space of a landmark is already the full group G = R?, we fix H = {e},
and M = G/{e} =G.

The Lie algebra of G is the vector space g = R%2. The Campbell-Baker-Hausdorff series oy, :
g X g — g simply maps (x1,x2) ocpn (Y1,%2) — (21 + y1,22 + y2). The embeding ¢ : u — g is
(u1) — (u1,0). Because m = g, the projection 7 : g — m is the identity.

With the Euclidean distance as a metric on m, the problem reduces to find u; € R that minimizes
e(uy) = Zd((ul,O) + mi,mi)2 = Z(ul + i —mi)? + (b — mb)?

The solution is u; = = >°,(m} — 7m4). Much Ado about Nothing. <&

Example 3.3. The configuration space of an ordinary differential-drive robot is the Lie group
G = E3. An element g € G encodes the orientation of the axis and the global position of the
robot in the plane R2. The differential-drive allows the robot to simultaneously move forward
and turn. However, the robot does not slide sidewards. Thus, the mobility is generated by
u = (X1,X2) as U C expui X1 + ua Xy for coefficients w1, us € R. The matrices X; are from
Example 2.1.

We assume that a landmark m € R? resides in the plane, and that it is perceived at 17, after
the robot has moved by w € U. The configuration space of the landmark is M = G/H, where
H =exp X; C G is a closed subgroup of G. Then h = (X;), and we define m = (X3, X3).

We aim to compute 7 in the following diagram.

TIuUoX m o — m T (ur,u2) X (mq,ma) —  (my, mg)
le Lo ta I L -

Obh: § X g — g Ocbh : (u1,u2,0) x (0,mq,m2) — (x1,22,23)
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Figure 2 : Set of landmarks tracked by moving differential-drive robot. Noise is added in the

simulation to the right.

The embeddings ¢ are canonic. The Campbell-Baker-Hausdorff series specific to Es is stated in
Example 2.1. We obtain the projection 7 : g — m by (z1, 22, x3) ocbh (—21,0,0) = (0,m1,m2),
which is approximately

_ 1 1.2 1.3 14 1.5 16 17 1.8
My = T2 gTiT3 g2+ g TiT3 + 1352102 ~ e d1Y3 ~ soa00172 T 153207173 + 362880 L1702
_ 1 1.2 1.3 1,4 1.5 1.6 17 1.8
Mg = T3+ 53T1T2 — G123 — 30702 + 167173 + 757102 ~ 50400173 ~ To3a0C1%2 T 36288001703
The mapping 7 formalizes the influence of the turning «; and forward motion us on the percep-
tion of the landmark at position (721, 72). The result is approximately
6 A

1M

— 5 p 1,25 1() 3.5 2 1,45 1,4 1,55 1
my =My +ug — urg — suimy + g(ugme — uius) + 57Ul + 55U U2 — T U2 — 565U

2 14
5.5 6

— A P 1 2.4 1,35 1 4.5 3 1 1 o
may = My + ury + 5 (ur1us — uime) — suimy + 57 (uime — ufus) + F7u7M1 — 755U 12
For instance, if the robot perceives the transition of a landmark

from m = (1.4867, —0.0808) € R?> to 7 = (0.3071,—0.5388) € R2,

the equations imply (using Newtons iteration) that the robot has moved by v = (0.5,1) € u.
The associated transformation matrix is simply

0 —-05 1 0.8775 —0.4794 0.9588
expu1 X1 +usXo=exp| 05 0 0 | =| 04794 08775 0.2448
0 0 0 0 0 1

Given a set of pairwise correlated landmarks m®, 7! € R? for 4 = 1,...,n and a metric d on
m, we ask for v € u that minimizes e(u) = Zid(T(u,mi),mi)Q. Since R? is a vector space,
the Euclidean metric is a natural choice. In Remark 3.5, we show how the order of the series
expansion affects the accuracy. <&

While a common laser range finder detects landmarks in the plane R?, stereo cameras correlate
landmarks in their field of view to locate them in R?®. The next example illustrates how to derive
the motion of a robot in 3d space from the transition of landmarks in R3.

We demonstrate that the Campbell-Baker-Hausdorff series substitutes quaternions, Euler-angles,
and polar decomposition. The formula eliminates the drawback of excessive parameters, and
obeys the symmetry of the problem. Moreover, we are able to account the mobility of the robot.



Figure 3 : Set of landmarks perceived by rotating robot with uy = us = ug = 0. Noise is added

in the simulation to the right.

Example 3.4. Let the configuration space of our robot be the 6-dimensional Euclidean group
G = E3 that was introduced in Example 2.2. An element of the group encodes orientation and
position in 3d space.

Let the configuration space of the landmark be R3. With H = SO3 C G as the subgroup of
orientations, M = G'/H is diffeomorphic to the configuration space of the landmarks R3.

The Lie algebra decomposes into g = h @ m. At first, we shall assume u = g, that the robot
moves with 6 degrees of freedom. Then, we approximate 7 : u X m — m with 7(u,m) = m as

4 4 4 1 1o (22 2 - .
my = uy + 1M1 — Maug + Mmaug + 5(ugue — uzus) + 3(—1m1(uz + u3g) + Mmourug + Mmauiusz)
_ R . . 1 1y S0 2 5
mo = us + Miuz + M2 — M3u + §(u3u4 — ujug) + Z(+m1u1u2 - mg(ul +uz) + Mmauau3)
_ R 5 5 1 1,2 . £ (02 2
m3 = ug — Mmiug + maur +m3 + 5(urus — ugug) + 7 (+Mruruz + Mmouguz — M3 (uj + uz))
Depending on the characteristics of the robot and its environment, we are free to restrict the

mobility by setting u; = 0 for several j € {1, ...,6}. In the illustrations, we choose three different
combinations. &

Remark 3.5. In the Examples 3.3 and 3.4, expansions of the Campbell-Baker-Hausdorff series
of order 4 give accurate results.

Ex. order | u; Ug Ex. order | u; Us Uus
3.3 2 | 0.494481 0.99826 34 2 1 -0.295240 0.492529 0.197448
3| 0.499927 1.00088 3| -0.299861 0.499874 0.199921
4 | 0.500048 1.00002 4 1 -0.300054 0.500104 0.200037
oo | 0.5 1.0 oo | -0.3 0.5 0.2




Figure 4 : Set of landmarks perceived by rotating and translating robot. To the left, we have

set us = ug = 0. In the right graphic, u; = ug = 0 holds.

4 QOutlook

The convergence radius of the Campbell-Baker-Hausdorff series is finite in most instances. Then,
the method can identify transformations w € U only in the vicinity of the identity. However, in
tracking applications with a sufficiently high sampling rate, our method is feasible.

The configuration space of a landmark is a vector space M = R" in all examples that we
have encountered. Otherwise, the Euclidean metric on m is not the canonic choice to measure
the distance between two points m,m € m. With more effort, one adapts the method to
match landmarks on “non-linear” homogeneous manifolds such as the 2-dimensional sphere
S? = S03/S0, with an appropriate metric.
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