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completely lighted, so when the light of lamp 
shines on you." 
 

 (LUKE 11:33-36) 
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Abstract 

 
This thesis focuses on the computer aided design, manufacturing, 

(CAD/CAM), Subdivision algorithm, and the dies design theory like 

Constant Ratios of Successive Generalized Homogeneous Strain 

Increments (CRHS). 

The representation of surfaces in smooth, parametric form is of central 

importance in mechanical engineering. In order to machine a shape using a 

computer, it is necessary to produce a computer-compatible description of 

that shape. 

A comparison has been made between the surfaces generated by CRHS 

method and the surfaces generated by approximation techniques (Quartic 

Uniform B-spline technique and Quantic Uniform B-spline technique). 

An Extrusion die profile is preliminary example which has been 

manufactured by CNC-milling process. The output surfaces from the 

Chaitian's subdivision algorithm which are employed in this thesis are 

highly efficient and accurate especially in 3D surfaces. 

In this research, the Chaitian's Subdivision algorithm has been adopted 

and developed in Uniform B-spline technique case, to find the optimum 

cutter radius, so optimum cutter radius result (semi surface finishing  

process) for Die profile surface generated by CRHS method is (4mm),while 

for the surface generated by Quartic Uniform B-spline technique it 

is(5mm), and for the surface generated by Quantic Uniform B-spline 

technique it is (3mm),these results improve the surface accuracy of 

machining when the subdivision iteration increases, and that affects 

directly the side step design ,which leads to change the toolpath length and 

design .  

The interior data of the desired surfaces, designed by Matlab Software 

which have been transformed to Surfcam software to get the machining 
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process simulation and G-code programs for the three samples (designed 

by CRHS and approximation method); this G-code program has been 

designed to 3-axis FANUC 15 MB system. 

The G-code programs have been implemented on CNC machine (Hermle 

C30U dynamic, 5-axis AC-kinematics, and the samples material is UREOL 

(Epoxy Resin), the machining process is achieved without a Lubricant. 
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CHAPTER ONE 
Introduction 

1.1 Introduction 

CAD/CAM (computer-aided design/computer-aided manufacturing) 

systems are an application to development of traditional design and 

manufacturing function. CAD is the part where the products are being 

designed with the help of computers, while CAM systems are those 

involving the efficient use of computer technology in the planning, 

management and control of the manufacturing function. The link between 

CAD/CAM is achieved with the use of computerized environment. The 

application of CAM in the manufacturing can be either "off-line" in which 

case the computer does not have direct connection with the process and the 

"On-line" in which the computer is directly connected with the process, 

controls the production, directs the machines and also receives information 

about current status, problems, breakdowns or needs [1]. 

Computer - aided design "CAD" can be most simply described as "using 

a computer in the design process". It involves any type of design activity 

which makes use of the computer to develop, analyze or modify an 

engineering design. 

A "CAD" system consists of three major parts:- 

1. Hardware: - computer and input / output. 

2. Operating system software. 

3. Application software: - CAD package. 

The graphics software such as "DXF format" used in this research is the 

collection of programs written to make it convenient for a user to operate 

the computer graphics system. 

The most basic functions of AutoCAD are the 2D drafting functions. 2D 

geometry such as lines, circles, curves and so on can be defined. Precise 2D 

drawing capabilities and a full range of drafting functions such as 

"automatic dimensioning of drawings" provide powerful tools for 
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draftsmen in creating technical drawings or engineering plans. Also, the 

power of the computer in storing and manipulating large amounts of data 

can be used to replace large drawing vaults and archiving facilities with 

electronic forms of data storage, such as magnetic tapes [2]. 

1.2 CAD System 

Computer-Aided Design system (CAD) is defined as the involvement of 

the computer into design activities and very often is associated with the use 

of interactive computer graphics system. There are many advantages in 

using a CAD system such as: 

•  It increases the productivity of the designer. CAD systems aid the            

designer to conceptualize the product more easily thus reducing the            

time needed for synthesizing. 

• It improves the quality of the design by enabling the designer to    

perform more complicated engineering analysis and consider            

a larger number of design alternatives. 

•  It improves design documentation. The graphical output of a CAD           

system is superior to manual drafting, fewer errors and drawings            

standardization results in better documentation. 

• It creates a manufacturing database during the creation of the product          

design documentation such as dimensions. Much of the required                

data base to manufacture the product is also created. 

In the CAD system there are many processes that must be followed to 

design a new product; one of the processes related to this work is 

Geometric modeling [3]. 
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1.2.1 Surface Modeling 

Surface modeling is a graphical technique used to define and describe 

surfaces. A wire frame model can only describe the edges or boundaries of 

a part. Points between the boundaries of a part cannot be defined with wire 

frames. Surface models define not only the edges of a part, but also the 

surface between edges. Surface models are usually produced after the wire 

frame boundaries have been created. The surface between the wireframe 

boundaries is then defined. After the surface is defined it can be displayed 

with or without hidden lines. Each surface can be shaded in different tones 

of gray or colors. There are two basic approaches to3-D surface     

modeling [3]: 

1. Polygon Mesh 

2. Parametric Bicubic Patches. 

1.2.1.1  Polygon Mesh 

A Polygon mesh is a set of connected polygons which form bounded 

planar surfaces. Figure (1.1.a) illustrates polygon mesh. The exterior of 

most structures can be represented by a polygon mesh. The main 

disadvantage of this method is that the representation is only approximate. 

Polygon mesh is a collection of edges, vertices and polygons. Vertices are 

connected by edges, and the polygons can be thought of as sequences of 

edges or vertices. There are three ways of defining a polygon: 

a) By vertex coordinates 

b) By pointing into a vertex list 

c) By pointing into an edge list. 

Among these, the third one is the best for consistency testing, since it 

contains the most information. The edges are shared in many structural 

models [3]. 
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Figure (1.1.a): 3-D surface modeling (Polygon mesh). 

1.2.1.2 Parametric Bicubic Patches 

Parametric Bicubic Patches define the coordinates of points on a curved 

surface in terms of bicubic (two cubic) equations. The boundaries of the 

patch are parametric cubic curves. Fewer bicubic patches than polygonal 

patches are needed to represent curved surface for fixed accuracy. 

a) Interpolation method [3]. 
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b) Parametric representation [3]. 
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There are three important parametric cubic curves: 

 Hermite Method. Figure (1.1.b) illustrates Hermite bicubic surface. 

 Bezier Technique. Figure (1.1.c) illustrates Bezier bicubic surface. 

 B-spline Method. Figure (1.1.d) illustrates B-Spline bicubic surface. 

Figure (1.1:b) 3-D surface modeling ( Hermite bicubic surface). 
. 

Figure (1.1.c): 3-D surface modeling (Bezier bicubic surface). 
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Figure (1.1.d): 3-D surface modeling (B-spline bicubic surface). 

 

 Table (1.1): Make comparison between the surfaces (relation between the surface 
and the control points ) .

Surface type NO# Bezier Uniform B-spline Hermite 

1 

The surface follows the 
shape of the control point 
polygon and this point in 
sensitive in this surface 
type. 
 

The curve follows the shape 
of the control point polygon 
and is constrained to lie in 
the convex hull of the 
control points. 
 

The surface follows the 
shape of the control point 
polygon and this point in 
insensitive in this type. 
 

2 

The ability to estimate the 
surface shape from the 
control polygon is positive 
(So it used in 
manufacturing and in 
CAGD) . 

The ability to estimate the 
surface shape from the 
control polygon is Negative 
(So it was used with 
subdivision algorithm 
widely to decrease this 
negative point). 

The ability to estimate the 
surface shape from the 
control polygon is Negative 
and depends on the first 
derivative for special 
control points. 

3 

The first and last control 
points are the end points 
of the curves segment 
 

The surface didn't contact 
the control points while it 
was controlled by the 
control points coordinates. 

In cubic case, the shape is 
oriented by the first and the 
last control points and the 
line tangent (first derivative 
for this first and last control 
point). 
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1.3 CAM system 

The computer aided manufacturing (CAM) software tools found for 

manufacturing procedures that use computers to assist in the planning and 

production of manufacturing processes from inventory control to the 

programming of machine tools. The communication between computer-

aided design and computer aided Manufacture has been developed. 

However, the possibility for the CAM user to inspect or revise the 

manufacturing systems capability description is very limited. Generally      

a CAM software user chooses a predefined standard machine and standard 

tools. The concept of such systems is based on the use of information and 

data from the CAD Process directly after necessary modification in the 

CAM procedures. The CAM system helps to generate cutter location data 

and post-process which creates part programming (G - Code) [4]. 

1.4 Application of CAD/CAM in Metal Forming 

With the ongoing rapid improvements on the areas of Computer Aided 

design, Computer Aided Manufacturing some attempts for developing an 

integrated extrusion die design system have been made. The new and 

improved 3D design packages supply the designer with ample possibilities 

to create a realistic model of the die. All features on the die, even the 

smallest, can be defined completely. In a Computer Aided Manufacturing 

environment this allows for direct data transfer to the CNC-machines. the 

subdivision surfaces algorithm improve existing design rules, and develop 

new design rules or just improve the general understanding of the extrusion 

die design. Furthermore, the CNC-machines may be programmed with the 

help of the 3D model and the design application must incorporate the 

limitations and possibilities of the available machines and tools.  

A computer based design application will help the experienced die 

designer to progress from the design of the profile to the design of the die 

by supplying him with the maximum support without limiting him in his 
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possibilities. The support should, among others, incorporate the 

maintenance of feature databases, the presentation of alternatives, 

calculation of mechanical properties and the maintenance and use of the 

knowledge database. The die designer or application manager must be able 

to incorporate new design insights into the application without much effort 

or the need to re-program the entire application. 

1.5 Subdivision Algorithms 

Subdivision curve and surface are valued in geometric modeling 

applications for their convenience and flexibility. They permit the 

representation of objects of arbitrary topological type in a form that is easy 

to design, render and manipulate. While they can be used to model smooth 

objects, they can also be extended to model objects with boundaries and 

sharp features [5]. 

Subdivision schemes that generalize B-spline representations are 

particularly useful.Although B-spline (and NURBS) surface representations 

are prevalent representation in geometric modeling, they cannot model 

objects of non-planar topology or objects possessing sharp features without 

cumbersome patch stitching and curve trimming. However, B-spline 

representations are easy to analyze because they are piecewise polynomials 

(or rational) in form. Subdivision surfaces, on the other hand, are defined as 

the limit of repeated refinement of a 3D control point mesh. In general, this 

limit does not result in a closed form representation. Therefore, 

conventional methods of analyzing surfaces are inadequate since they 

depend on representations such as polynomial or rational function. 

There are also techniques for deriving exact formulas for points and normal 

on the limit surfaces.  

The elegant simplicity and practical advantages of subdivision 

algorithms have made them useful for particular applications. For example, 

they are ideal for quickly rendering an object where a piecewise planar 
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model suffices. With the capability to calculate exact points and normal on 

the limit surface, subdivision algorithms are finding wider acceptance for 

applications that require smooth surfaces. With the added capability of 

creating sharp features, subdivision surfaces can be applied to represent 

even more realistic objects. 

Subdivision surfaces are also making fundamental contributions to new 

application areas in geometric modeling. For example, they are a key 

element in the multiresolution representation for optimized surface      

fitting [5]. 

This thesis examines two topics related to subdivision surfaces. First, it 

has been shown how piecewise smooth subdivision scheme can be 

analyzed. Second it presents an engineering application. 

1.6 Constancy of the Ratio of the Successive Generalized Homogeneous 

Strain-increment (CRHS) Concept. 

This concept of tool design is based upon the basis of homogeneous 

strain for the metal forming operation, which represents a function of the 

physical dimensions of the engineering material to be formed. The die 

surface profile or tool profile can be produced by using this concept, 

because the forming pass is divided into number of sections (n) depending 

on the expression of CRHS through these sections, as follows [6]:
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where (εHn) is the value of homogeneous strain at the section (n) through 

the forming pass. But (S) is a constant called ‘Rate of Deformation’, it does 

not depend on the time because it is related to the deformation rate and has 

no relation to the strain rate. The value of (S) can be taken randomly, if it 

has a value: 

S<1: it means that the rate of deformation is (Decelerated), and it has a sign 

of (DCRHS). 
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S=1: the rate of deformation is (Uniform), and it has a sign of (UCRHS). 

S>1: the rate of deformation is (Accelerated), and it has a sign of (ACRHS) 

as shown in Figure (1.2). 

 The constant (S) may take different values, but the experience in the 

metal forming tool design indicates that the range in between (0.8 –1.2) is 

sufficient for most applications. In this study, the value (S = 0.8) is 

considered as a decelerated rate of deformation, and the value (S = 1.2) for 

the accelerated rate [6]. 
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1.7 Aim of this Research: 

      This aim of this research is: 

1. Investigate subdivision surfaces such as Bezier, B-spline surface 

models by approximation technique, especially the Chaitian's 

Subdivision algorithm for Uniform B-spline technique, this 

technique could be used in reconstruction surface to produce 

smoother surface, then submit these curves and surfaces in 

production field. 

2.  Generate toolpath for milling process to CNC machine to make the 

die profile for Direct extrusion process and use the theoretical design 

like (CRHS) as guide to apply this algorithm, and make comparison 

between them, as well as find the deviation between the surface (Die 

profile shape) which is made by CRHS method, Quartic Uniform   

B-spline technique and Quintic Uniform B-spline technique which is 

developed from Chaitian's algorithm, and the surfaces after exposure 

to milling process. 

3. The representation of surfaces in smooth, parametric form is of 

central importance in mechanical engineering. In order to machine a 

shape using a computer, it is necessary to produce a computer-

compatible description of that shape. 

4. These surfaces, for which the cutter contact points are generated for 

the proposed algorithms, are machined using CNC machine (Hermle 

C30U dynamic, 5-axis AC-kinematics) and then this data is used to 

generate cutter location data represented by G-Code format which is 

implemented on this CNC machining. 
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CHAPTER TWO 
Literature Survey 

2.1 Introduction: 

The researches published on the subject of Subdivision algorithms for 

the surfaces and curves is very important because it will give the researcher 

good background on his research and the sequence development of this 

research, this technique was invented in the 1978, it continues 

development, and the research has varied since then in more than one 

direction, and is more than one field, this direction is represented in these 

points: 

1. Approximating (not interpolating original vertices). 

2. Interpolating the original vertices. 

3. Development of the subdivision surfaces and curves algorithm to 

service the field which they need. 

For this purpose and to gain benefit, the researcher reviews the related 

literature as follows: 

2.2 Subdivision Algorithms: 

Hoppe, H., (1994); Introduces general method for automatic 

reconstruction of accurate, concise, piecewise smooth surfaces from 

unorganized 3D points.  

Previous surface reconstruction methods have typically required 

additional knowledge, such as structure in the data, known surface genus, 

or orientation information. In contrast, the method outlined requires only 

the 3D coordinates of the data points. 

This method is able to automatically infer the topological type of the 

surface, its geometry, and the presence and location of features such as 

boundaries, creases, and corners. 

The reconstruction method has three major phases:  

1) Initial surface estimation, 

 2) Mesh optimization. 
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3) Piecewise smooth surface optimization. A key ingredient in phase 3, and 

another principal contribution is the introduction of a new class of 

piecewise smooth representations based on subdivision.  

The effectiveness of the three-phase reconstruction method is demonstrated 

on a number of examples using both simulated and real data [7]. 

Zorin, D., and Kristjansson, D.  (2000) propose to use a different set of 

basis vectors for evaluation, which, unlike eigenvectors, depend 

continuously on the coefficients of the subdivision rules. The approach 

becomes possible to define evaluation for parametric families of rules 

without considering excessive number of special cases, while improving 

numerical stability of calculations it demonstrates how such bases are 

computed for a particular parametric family of subdivision rules extending 

Loop subdivision to meshes with boundary, and provides a detailed 

description of the evaluation algorithms [8]. 

Joy's, K. I. (2000) his paper basis depends on the binary subdivision of 

the uniform B-spline surface, which is defined by initial polygonal mesh, 

along with a subdivision (or refinement) operation which, given a 

polygonal mesh, will generate a new mesh that has a greater number of 

polygonal elements, and is hopefully “closer” to some resulting surface, by 

repetitively applying the subdivision procedure to the initial mesh, we 

generate a sequence of meshes that (hopefully) converges to a resulting 

surface [9] . 

Joy, K. I. (2000) introduces Subdivision methods for curve generation 

based upon a procedure which successively refines a control polygon into a 

sequence of control polygons that, in the limit, converges to a curve, and 

develop the refinement method for a quadratic uniform B-spline curve; the 

curves are commonly called subdivision curves as the refinement methods 

are based upon the binary subdivision of uniform B-spline    curves [10]. 

Vlachos, A., Peters, J., Boyd, C., and Mitchell, J.L. ,(2001)   introduce 

curved point-normal triangles, or short PN triangles, as an inexpensive 
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means of improving visual quality by smoothing out silhouette edges and 

providing more sample points for vertex shading operations. Specifically, 

PN triangle generation and sub-triangulation are to be inserted between the 

vertex-and-primitive-assembly stage and the vertex-shading stage of the 

graphics pipeline . The geometry of a PN triangle is defined as one cubic 

Bezier patch. The patch matches the point and normal information at the 

vertices of the flat triangle. Its normal is a separate linear or quadratic 

Bezier interpolate of the data [11]. 

Amresh, A., Farin, G., and Razdan, A., (2001) introduce two methods 

of adaptive subdivision for triangular meshes that make use of the Loop 

scheme or the Modified Butterfly scheme to get approximating or 

interpolating results respectively. The results are obtained at a lower cost 

when compared with those obtained by regular subdivision schemes. The 

first method uses the angles between the normal of a face and the normal of 

the adjacent faces to develop an adaptive method of subdivision. The other 

method relies on user input, i.e. the user specifies which parts of the mesh 

should be subdivided. This process can be automated by segmentation 

techniques, e.g. watershed segmentation, to get the areas in the mesh that 

need to be subdivided [12]. 

 

Bertram, M., and Hagen, H., (2001) propose a modified Loop 

subdivision surface scheme for the approximation of scattered data in the 

plane. Starting with a triangulated set of scattered data with associated 

function values, this scheme applies linear, stationary subdivision rules 

resulting in a hierarchy of triangulations that converge rapidly to a smooth 

limit surface. The novelty of this scheme is that it applies subdivision only 

to the ordinates of control points, whereas the triangulated mesh in the 

plane is fixed. The modified subdivision scheme defines locally supported, 

bivariate basis functions and provides multiple levels of approximation 

with triangles [13]. 
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Claes, J. (2001) present a new modeling paradigm, providing the 

possibility of locally choosing an interpolating variant of the 

conventionally approximating subdivision scheme. His approach combines 

the advantages of approximating schemes with the precise control of 

interpolating schemes. Unlike other solutions that mostly focus on locally 

changing the weighting factors of the subdivision scheme, this thesis keeps 

the underlying uniform scheme intact. This method is based upon 

introducing additional control points on well-chosen locations, with 

optional interactive user control over the tangent plane (or surface normal) 

and the tension of the surface near the interpolating control points. 

The same techniques used for surface modeling and editing are also 

adapted to implement a versatile free-form deformation tool, especially 

designed for 2D textured objects based on subdivision surfaces applied in 

2D [14]. 

Stam, J. and Loop, C. (2002) provide new subdivision operator that 

unifies triangular and quadrilateral subdivision schemes. Designers often 

want the added flexibility of having both quads and triangles in their 

models. The new scheme is a generalization of the well known Catmull- 

Clark and Loop subdivision algorithms, and show that surfaces are G1 

everywhere and provide a proof that it is impossible to construct a G2 

scheme at the quad/triangle boundary. However, it provides rules that 

produce surfaces with bounded curvature at the regular quad/triangle 

boundary and provides optimal masks that minimize the curvature 

divergence elsewhere. It demonstrates the visual quality of the surfaces 

with several examples of categories and subject descriptors curve, surface, 

solid, and object representations [15]. 

 

Gross, N. (2004) introduces a new algorithm based on subdivision 

techniques which have been developed that efficiently interpolates              

a quadrilateral mesh of arbitrary topology with almost globally curvature 
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continuous fair NURBS surfaces. The Algorithm proposed is (faired 

interpolating NURBS) algorithm. The output of NURBS surfaces can be 

exported to commercial CAD systems in standards of data exchange, like 

IGES or STEP. This algorithm tackles the following problem: 

1. Subdivision surfaces tend to have oscillations around extraordinary 

vertices and thus do not obtain a measure of surface fairness 

demanded in e.g. automotive design. 

2. Subdivision techniques are not compatible with standards of data 

exchange, like IGES or STEP. 

3. Approximating algorithms like the commonly used Catmull-Clark 

algorithm shrink in relationship to the input mesh. 

4. Gaps between patch boundaries and discontinuous parameter lines 

are inherent to spline representation [16]. 

 

Barthe, L., and Kobbelt, L. (2004) extend the standard method to 

derive and optimize subdivision rules in the vicinity of extraordinary 

vertices (EV). Starting from a given set of rules for regular control meshes, 

we tune the extraordinary rules (ER) such that the necessary conditions for 

C1 continuity are satisfied along with as many necessary C2 conditions as 

possible. The approaches sets up the general configuration around an EV 

by exploiting rotational symmetry and reformulating the subdivision rules 

in terms of the subdivision matrix' eigencomponents. 

This method: 

1. improves the curvature behavior around EVs. 

2. optimizes several subdivision rules, i.e. not only the one for the EV 

itself but also the rules for its direct neighbors. 

3. demonstrates capability to tune the ERs for the well-known Loop 

scheme and deriving ERs for a p3-type scheme based on  6-direction 

Box-spline [17]. 
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Yvonnet, J. (2004) investigates the analysis of a piecewise smooth 

subdivision scheme, and applies the scheme to reconstruct the objects from 

non-uniformly sampled data points. 

It extends the use of eigenanalysis and characteristic maps to analyze a 

piecewise smooth subdivision scheme that generalizes quartic triangular   

B-spline, and examines some topics related to subdivision surfaces: 

1. It shows how a piecewise smooth subdivision scheme can be 

analyzed. 

2. It derives formulas for points and tangents on the limit surface. 

3. It presents an engineering application, and describes an algorithm for 

creating a surface that approximates an object from non-uniformly 

sampled data points and interpolates boundary curves [18]. 

Hakenberg, J. P. (2004) performed derive stationary subdivision rules 

on bi-uniform volumetric grids consisting of pair wise combinations of 

tetrahedral, octahedral, triangular prisms and cubes and refine the existing 

framework of quasi-interpolates so that weight stencils are obtained by 

algebraic manipulation. The joint spectral radius test proves that the 

combined schemes yield C2 limit functions. 

Furthermore, he presents an algorithm to subdivide an unstructured mesh 

consisting of the basic shapes enumerated above. The subdivision rules are 

generalized, such that smoothness is preserved across all faces and the 

effort of implementing the scheme remains low [19]. 

Seeger, S., Hormann, K., Hausler, G., and Greiner, G. (2005) studied 

how the well-known process of triangle mesh subdivision can be expressed 

in terms of the simplest mesh modification, namely the vertex split.          

Although this basic operation is capable of reproducing all common 

subdivision schemes if applied in the correct manner, they focus on 

Butterfly subdivision only for the purpose of perspicuity [20]. 
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Schaefer, S., Levin, D., and Goldman, R. (2005) studied subdivision 

schemes generate self-similar curves and surfaces. Therefore there is a 

close connection between curves and surfaces generated by subdivision 

algorithms and self-similar fractals generated by Iterated Function Systems 

(IFS). It is demonstrated that this connection between subdivision schemes 

and fractals is even deeper by showing that curves and surfaces generated 

by subdivision are also attractors. they illustrate this fractal nature of 

subdivision, and present the derivatives which are associated with the curve 

type for many different subdivision curves and surfaces without 

extraordinary vertices, including B-splines, piecewise Bezier, interpolator 

four-point subdivision, bicubic subdivision,three-direction Quartic box-

spline subdivision and Kobbelt's subdivision surfaces [21].   

2.3 Analysis Subdivision Algorithms: 

Claes, J. (2001) eigenanalysis is a handy tool to study the limit behavior 

of a subdivision curve scheme. A single step can be described in matrix 

form. In order to cope with endpoint conditions, the matrix formulation has 

the problem that the matrix should be double in size after every subdivision 

step. Therefore, usually a matrix of infinite dimensions is used. Such a 

matrix can either represent the subdivision of an infinite chain of points, or 

a closed curve.  For many practical investigations, also a very limited 

matrix can also be used. In that case, the matrix represents a local 

environment that shrinks with every subdivision step. 

As an example, is the subdivision scheme for cubic B-splines [14]. 

Schweitzer, J. E (2004) introduced theoretical basis for designing 

subdivision rules for various sharp surface features, and presents an 

analysis to determine properties of the limit surface for the rules that define 

a piecewise smooth subdivision surface. It shows that these surfaces are 

well-defined tangent plane, and behave as expected at singular points. 
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 Analysis of the surface provides a more general framework for 

examining a subdivision scheme and accomplishes the specific tasks for the 

piecewise smooth subdivision scheme [5]. 

 

2.4 Applications for Subdivision Algorithms 

Lounsbery, J.M. (1994) presents several applications of this work, 

including smooth level-of-detail control for graphics rendering, 

compression of geometric models, and animation previewing. The resulting 

algorithms are shown to run quite efficiently in most cases, and another 

application is in industrial design and computer animations [22].  

 

Claes, J. (2001) gives an application of the subdivision techniques 

outside the world of surface modeling, where subdivision surfaces are used 

in 2D as a base for free-form deformations to fluently manipulating 2D 

animation objects, and it's also used in engineering applications, in 

combination with the finite element method. Not only the outer surface, but 

also the inner structure of an object is important, subdivision volumes are 

used [14]. 

 

Gross, N. (2004) introduces subdivision algorithms which have obvious 

advantages over spline representation also in the engineering area, as they 

can calculate arbitrary topological surfaces in a single calculation step. For 

example, they can eliminate problems with gaps between patch boundaries 

and discontinuous parameter lines inherent to spline representation.  The 

new algorithms based on subdivision techniques have been developed that 

efficiently interpolate a quadrilateral mesh of arbitrary topology with 

almost globally curvature continuous fair NURBS surfaces. The Algorithm 

is called FIN (faired interpolating NURBS) algorithm. The output NURBS 

surfaces can be exported to commercial CAD systems in standards of data 

exchange, like IGES or STEP.  
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Some investigation has begun of subdivision surfaces which may serve 

as input to NCmilling. Even though the advantages of subdivision surfaces 

for this task have been recognized, the difficulty has been to date to 

calculate tool paths on the subdivision surface, as these algorithms have 

only been developed for spline surfaces in the past. This algorithm (FIN) 

combines the two surface representations; these former difficulties are 

inherently overcome. Tool-paths can be generated on the FIN surfaces with 

standard tools like Mastercam [16]. 

 

Schweitzer, J.E. (2004) in the interest of widening the application of 

subdivision surfaces, investigates a problem motivated by engineering 

practice, and addreses the reconstruction of an object from non-uniformly 

sampled 3D data. 

Created subdivision surfaces approximate object that have been sampled 

densely and uniformly. Costs associated with this data requirement include 

sampling time and expense, the difficulty of obtaining uniform samples 

from complex objects poses another problem. For example the physical 

dimensions of a scanner may make it impossible to reach certain regions 

such as in holes and pockets. There may also be regions that are occluded 

from the view of a scanner. For these reasons they developed an algorithm 

that reconstructs an object from non-uniform sampled data [5]. 
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2.5 Listing the practical part for this thesis with respect to previous 

literature survey 

1. This thesis it has used Chaitian's subdivision algorithm (Linear 

subdivision) for curves, and surfaces used (Bezier and Uniform       

B-spline techniques), then employees it in production field after 

making some analysis to this curves and surfaces. 

2. This thesis reviews Doo and Sabian's algorithm (which use 

Quadrilaterals division), while another method reviews others like 

Loop algorithm (which use triangles division) used with many 

random and regular shapes by using the linear subdivision to these 

shape. 

3. The proposed algorithm (Chaitian's subdivision algorithm) is 

developed in this thesis especially for Uniform B-spline curve after 

making more than one division iterations (Quartic Uniform B-spline, 

and Quantic Uniform   B-spline techniques). 

4. The refined B-spline technique has been used to create Die profile 

for direct extrusion shape by trial and error method and by moving 

the control points to arrive to the profile shape which is created 

before by theoretical design method like (CRHS). Comparison is 

made with the surface (Die shape) for these three surfaces. 
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CHAPTER THREE 
Bezier and Uniform B-spline Technology 

3.1 Approximation of Curves and Surfaces: 

Many surfaces have mathematically complex or computationally 

expensive representations. For some applications, an approximation to 

these surfaces is adequate. 

The problem of constructing surfaces from a set of points arises in 

numerous applications such as automobiles and ship hull design, scientific 

visualization, and geometric modeling. There are many variations of this 

problem, based on the form of data on extra information about the input, 

and requirements for the resulting surface. 

This thesis focuses on the approximation of known surfaces. A surface 

will be approximated by sampling it first, and then building an 

approximating surface that interpolates the samples [23]. 

Computer-aided modeling techniques have been developed since the 

advent of NC milling machines in the late 40’s. Since the early 60’s Bezier 

and B-spline representations have evolved as the major tool to handle 

curves and surfaces [24]. 

These representations are geometrically intuitive and meaningful and 

they lead to constructive numerically robust algorithms. 

The core concepts of Computer-aided Geometric Design (CAGD) with 

the intent to provide a clear and illustrative presentation of the basic 

principles as well as a treatment of advanced material, including 

multivariate splines, some subdivision techniques and constructions of 

arbitrarily smooth free-form surfaces. 

One way to categorize surface fitting schemes is by locality of data used in 

constructing a portion of surface. A global scheme uses arbitrarily many of 

the data points in constructing each portion of the surface. 
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Whereas a local scheme only considers those data points near the portion 

of the surface being created, local schemes construct piecewise continuous 

surfaces, and ensure that adjacent surface patches meet "smoothly" [23]. 

By introducing a fourth parameter, (u), into the coordinate description of 

curve, we can express each of the three Cartesian coordinates in parametric 

form. Any point on the curve can then be represented by the vector 

function: 

P (u) =(x (u), y (u), z (u))                                                   ………. (3.1) 

Usually, the parametric equations are set up so that parameter u is defined 

in the range from (0) to (1). 

Parametric equations for surfaces are formulated with two parameters (u) 

and (w). Coordinate positions on a surface are then represented by the 

parametric vector function: 

P (u, w) =(x (u, w), y (u, w), z (u, w))       u, w ∈ [1, 0]    ………. (3.2) 

Many techniques exist for setting up polynomial parametric equations 

for curves and surfaces, given the coordinates for the control points. Basic 

methods for displaying curves specified with control points include the 

Bezier and B-spline curves [25]. 

In this chapter the Bezier and Uniform B-spline technique is studied in 

different freedom degrees as case study, with making all calculations, 

mathematical derivatives and drawing the curve and surface for the 

proposed technique. 
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3.2 Bezier Curves 

In this setting every polynomial curve segment can be represented by its 

so-called Bezier polygon. The curve and its Bezier polygon are closely 

related. They have common end points and end tangents, the curve segment 

lies in the convex hull of its Bezier polygon, etc. Furthermore, one of the 

fastest and numerically most stable algorithms used to render a polynomial 

curve is based on the Bezier representation [24]. 

 Mathematically a parametric Bezier curve is defined by [26]: 
…………. (3.3) 
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In Matrix Form: 
For the Bezier curve, when n=2 equation (3.3) is rewritten in matrix 

form as: 
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…………. (3.8) 

…………. (3.9) 

 This allows to rewrite the equation even more compactly as 
…………. (3.10) PUM)u(P )2(B=  
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3.2.1 Bezier Curve Properties: 

1. A Bezier curve is a polynomial. 

The degree of the polynomial is always one less than the number of 

control points. In computer graphics, we generally use degree (3). 

Quadratic curves are not flexible enough and going above degree (3) 

gives rises to complications and so the choice of cubic is the best 

compromise for most computer graphics applications. 

2. The curve follows the shape of the control point polygon. 

        It is constrained within the convex hull formed by the control points. 

3. The control points do not exert 'local' control. 

Moving any control point affects the entire curve to a greater or lesser 

extent. All the basis functions are everywhere positive except at the 

point u = 0 and u = 1 

4. The first and last control points are the end points of the curves 

segment 

5. The tangent vectors to the curve at the end points are coincident with 

the first and last edge of the control point polygon. 

6. Moving the control points alters the magnitude and direction of the 

tangent vectors. 

This is the basis of the intuitive 'feel' of a Bezier curve interface. 

7. Variation diminishing property 

The curve does not oscillate about any straight line more often than 

the control point polygon. 

8. The strange mix of points on and off the curve 

9. Non localness 

As soon as you move one control point, you affect the entire curve 

10. Relationship between the degree of the curve and the number of 

control points [27]. 
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Case Study (1) 

Suppose the initial control points of the desired two curves are: 

a) p1=(100,200,0), p2=(250,200,0),and p3=(250,100,0). 

b) p1=(200,100,0), p2=(500,300,0),and p3=(400,250,0). 

And n=2, draw the two Bezier Curves. 

 Rearrange the control points in matrix form as follows: 

a) P11=(100,200,0)         p12=(250,200,0)              p13=(250,100,0) 
b) P11=(200,100,0)         p12=(500,300,0)                p13=(400,250,0) 

 Use the equation (3.7) to determine   p(u)

 Plot the control points and the curves result from equation (3.7) as 

shown in Figure (3.1: a, and b), with (u) ranging from (0) to (1). 
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Figure (3.1.a) Bezier curve with three control points n=2 (regular 
control points). 
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 Figure (3.1.b) Bezier curve with three control points n=2(irregular 
control points). 

.



CHAPTER THREE     Bezier and Uniform B-spline Technology 27

For a cubic Bezier curve, with n=3, equation (3.3) is rewritting in matrix 

form as: 
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…… (3.11) 

………… (3.12) 

………… (3.13) 

………… (3.14) 

 This allows to rewrite the equation even more compactly as 
………… (3.15) PUM(u)P B(3)=  

Case Study (2) 

Suppose the initial control points of the desired two curves are: 

a) p1=(50,100,0),p2=(200,100,0),p3=(200,20,0),and p4=(450,20,0). 

b) p1=(50,100,0),p2=(100,200,0),p3=(250,150,0), and p4=(150,50,0) 

 And n=3, draw the two Bezier Curve. 

 Rearrange the control points in matrix form as follows: 

a) P11=(50,100,0) p12=(200,100,0) p13=(200,20,0) p14=(450,20,0) 

b) P11=(50,100,0) p12=(100,200,0) p13=(250,150,0) p14=(150,50,0) 

 Use the equation (3.12) to determine   p(u)

 Plot the control points and the curves result from equation (3.12) as 

shown in Figure (3.2: a, and b), with (u) ranging from (0) to (1). 
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Figure (3.2.a) Bezier curve with four control points n=3 (regular control points). 
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Figure (3.2.b) Bezier curve with four control points n=3 (irregular control points). 

 

 

 

 

 

 

 

 
 

Obviously, the composition of these matrices varies with the number of 

vertices, n+1.So for n=4: 
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Case Study (3) 

Suppose the initial control points of the desired two curves are: 

p1=( )50,500,0  ,p2=(150,400,0), p3=(  0,300,0), p4=(200,200,0), and 

p5=(120,100,0). 

 And n=4, draw the two Bezier Curve. 

 Rearrange the control points in the ,matrix form as follows: 

P11=( )50,500,0  p12=(150,400,0) p13=(  0,300,0) p14=(200,200,0) 

p15=(120,100,0) 

 Use the equation (3.18) to determine   p(u)

 Plot the control points and the curves result from equation (3.18) as 

shown in Figure (3.3), with (u) ranging from (0) to (1). 
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Figure (3.3) Bezier curve with five control points n=4. 
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The matrix form when n=5: 

pUMP(u)
0 0 000 1
0 0 0 0 5 5-
0 0 0 10 20 10
0 0 10 30 30 10-
0 5 20- 30 20- 5
1 5- 10 10- 5 1-
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………….. (3.20) 

………….. (3.21) 

Case Study (4) 

Suppose the initial control points of the desired two curves are: 

p1=( 0,0,0),p2=(50,500,0),p3=(150,0,0),p4=( )250,400,0 ,p5=(350,150,0),   

And p6= (450,250,0). 

 And n=5, draw the two Bezier Curve. 

 Rearrange the control points in the ,matrix form as follows: 

P11=(0,0,0) 12=(50,500,0) p13=(150,0,0)  p14=( )250,400,0  p15=(350,150,0), 

p16= (450,250,0) 

 Use the equation (3.21) to determine   p(u)

 Plot the control points and the curves result from equation (3.21) as 

shown in Figure (3.4), with (u) ranging from (0) to (1). 
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Figure (3.4) Bezier curve with six control points n=5. 
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The matrix form when n=6: 

pUMP(u)
0 0 0 0 0 0 1
0 0 0 0 0 6 6-
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……………. (3.23) 

Case Study (5) 

Suppose the initial control points of the desired two curves are: 

p1=(50,600,0),p2=( )100,500,0 ,p3=(150,400,0),p4= )0,300,0(   ,                 

p5=(300,150,0), p6= (75,150,0),and p7= (200,0,0).  

 And n=6, draw the two Bezier Curve. 

 Rearrange the control points in the ,matrix form as follows: 

P11=(50,600,0) P12=( )100,500,0  p13=(150,400,0)  p14=  )0,300,0(  

p15=(300,150,0)    p16=(75,150,0)       p17= (200,0,0)  

 Use the equation (3.23) to determine   p(u)

 Plot the control points and the curves result from equation (3.23) as 

shown in Figure (3.5), with (u) ranging from (0) to (1). 
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 Figure (3.5) Bezier curve with seven control points n=6. 
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3.3 Bezier Surfaces 

Bezier surfaces provide a flexible and powerful surface design tool. 

However practical usage suffers from the necessity of specifying precise, 

non intuitive mathematical information, e.g. position, tangent and twist 

vectors [26]. 

A Cartesian or tensor product Bezier surface is given by 
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The comprises an (n+1)x(m+1) rectangular array of control points 

defining the vortices of characteristic polyhedron of a Bezier patch. 

ijp

……………. (3.25) 

……………. (3.26) 

……………. (3.27) 
So, the general matrix equation for Bezier patch is: 

T
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where the subscripts on the matrices indicate their dimensions for a 

bicubic Bezier patch (4x4).and expanded equation (3.27) becomes: 
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The matrix P is the matrix which contains the points that define the 

characteristic    polyhedron [26]. 
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Implementing program to build the Bezier surface needs drawing the 

block diagram which is shown in Figure (3.6) and explaining the main 
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steps of the program while the detailed explanation of the proposed 

program has been given in the flowchart shown in Figure (3.7).  

 

Start  

 

 Input 
The Control points coordinate (xi, yi, zi) 

Counter for Increment value (Δu,Δw) 
 

 

 

 

 
Calculate 

the )w,u(p),w,u(p),w,u(p ziyixi  
from equation (3.27) 

 

 

 

 

 
Output 

Bezier Surface presentation, 
Surf(xi,yi,zi) 

 

 

 

 
   End 

 
 

  Figure (3.6): Block diagram of the proposed program depending on Bezier technique.                     
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 Start 

 
Input 

The control points coordinates of surface vector 
(n x m) 

 

 

 Input 
The control points coordinates of surface 

vector (n x m)  

 
Input 

The matrix form )n(B and (n) value.  

 
Input 

The Increment value (Δu, Δw)  
 

 
U=0  

w=0 

Calculate 
The )w,u(p),w,u(p),w,u(p ziyixi  

from equation (3.27) 

w=w+Δw 

1w0 ≤≤  

No 

1w0 ≤≤  
No 

u=u+Δu 

Yes 

Yes 

 

 

 

 

 

 

 

 

 

 

 
Output 

Bezier Surface presentation 

End

 

 

 
Figure (3.7): Flowchart of the proposed program depending on Bezier technique. 
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The proposed program can represent the surface in graphical mode with 

the software program Matlab (V7.0). Figures (3.8), (3.9), (3.10),(3.11),and 

(3.12) show a final result of practical application of our proposed program. 

 

 

 

 

 

 

 

 

 

 

 
Figure (3.8) Bezier Surface (2nd degree), n=2, Matrix form (3x3). 
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Figure (3.9) Bezier Surface (3rd degree), n=3, Matrix form (4x4). 
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Figure (3.10) Bezier Surface (4th degree), n=4, Matrix form (5x5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (3.11) Bezier Surface (5th degree), n=5, Matrix form (6x6). 
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(a) 
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 Figure (3.12: a, b, and c) Bezier Surface (6th degree), n=6, Matrix form (7x7) 
with Control points. 
           a-Control polygon for Bezier surface with Matrix form (7x7). 
           b-Bezier surface (6th degree), n=6. 
           c- Bezier Surface (6th degree), n=6, with control polygon for Matrix form    

(7x7) with Control points. 
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3.4 B-spline Curve 

From the mathematical point of view, a curve generated by the vertices 

of a polygon is dependent on some approximation scheme to establish the 

relationship between the curve and the polygon. 

The scheme is provided by choice of the basis function. Two 

characteristics of the Bernstein basis, however, limit the flexibility of the 

resulting curves. So, their is another basis, called the B-spline basis (from 

Basis spline), which contains the Bernstein basis as a special case. This 

basis is generally non-global. The non-global behavior of B-Spline curves 

is due to the fact that each vertex Bi is associated with a unique basis 

function, thus, each vertex affects the shape of curve only over a range of 

parameter values where the associated basis function is nonzero. The        

B-spline basis also allows the order of the basis function and hence the 

degree of the resulting curves to be changed without changing the number 

of defining polygon vertices. 

The uniform basis functions are defined by the following expressions [26]: 
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……………. (3.31) 

 
where k controls the degree (k-1) of the resulting polynomial in u and 

also the continuity of the curve. 
……………. (3.32) N+k+1=T 

where T the number of knots. 

The final equation of Uniform B-spline curve when k=3 is: 

]pup)1u2u2(p)u1[(
2
1)u(p 2i

2
1i

2
i

2
i ++ +++−+−=  ……………. (3.33) 
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3.4.1 B-spline Properties: 

1. Controls points: 

The curve follows the shape of the control point polygon and is 

constrained to lie in the convex hull of the control points. 

2. Variation in diminishing property: 

The curve does not oscillate about any straight line more often than the 

control point polygon. 

3. Affine transformation compatibility: 

The curve is transformed by applying any affine transformation (that 

is, any combination of linear transformations) to its control point 

representation. 

4. Local Control: 

A B-Spline curve exhibits local control - a control point is connected 

to four segments (in the case of a cubic) and moving a control point 

can influence only these segments [27]. 

  And the special properties for the Uniform B-spline curve: 

 The join point on the value of u between two segments is called the 

knot value. 

 For uniform B-spline, knots are spaced at equal intervals in u. 

 The blending functions are simple copies translated in u. 

 In general uniform B-spline curves do not interpolate the end    

points [27]. 
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Matrix Form: 

When rewriting equation (3.33) using the matrix notation, Uniform      

B-spline with k=3 [29] is: 
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Case Study (6) 

Suppose the initial control points of the desired two curves are: 

p1=(0,10,0),p2=( )20,30,20 ,p3=(40,-5,20)  

 And k=3, draw the Uniform B-spline curve. 

 Rearrange the control points in the ,matrix form as follows: 

P11=(0,10,0)    P12=( )20,30,20     p13=( 40, -5,20)    

Use the equation (3.34) to determine   p(u)

Plot the control points and the curves result from equation (3.34) as shown 

in Figure (3.13), with (u) ranging from (0) to (1) 

 

 

 

 

 

 

 

 

 Figure (3.13) B-spline curve (2nd degree), k=3, Matrix form (3x3) with Control   
points. 

 

And for cubic B-spline, when k=4 [29]: 
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Derivative of the Uniform B-Spline Basis Functions with k=5: 

The derivative for uniform B-spline with K=5 is the same for cubic but 

with more complex solving equations (see Appendix A). 
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……...... (3.36) 

……...... (3.37) 

…. (3.38) 

3.5 B-spline Surfaces 
     The natural extension of the Bezier surface is the Cartesian product,     
B-spline surface is defined by 
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……...... (3.39) 

The pi,j are control points and vertices of the characteristic polyhedron. 

)u(N k,i : : are the basis functions and they are the same as those of B-

spline curves 

)w(N l,.j

[26]. 
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The equation (3.39) has been written as 
……...... (3.40) 
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Implementing the program to build the Uniform B-spline surface needs 

drawing the block diagram which is shown in Figure (3.14) and explaining 

the main steps of the program while the detailed explanation of the 

proposed program has been given in the flowchart that is shown in Figure 

(3.15). 

 

Start  

 

 
Input 

the Control points coordinate (xi, yi, zi) 
counter for Increment value (Δu,Δw) 

 

 

 

 

 
Calculate 

the )w,u(p),w,u(p),w,u(p ziyixi  
From equation (3.46) 

 

 

 

 

 

 

 

 

 

 
Figure (3.14): Block diagram of the proposed program depending on Uniform B-spline                      

technique. 

Output 
Uniform B-spline Surface presentation, 

Surf(xi,yi,zi) 

End 
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Start 

 

 Input 
The control points coordinates of surface 

vector (n x m)  

 
Input 

The matrix form )s(M and (k) value.  

 
Input 

The Increment value (Δu, Δw)  
 

 
U=0  

w=0 

Calculate 
The )w,u(p),w,u(p),w,u(p ziyixi  

From equation (3.46) 

w=w+Δw 

1w0 ≤≤  

1u0 ≤≤
 

u=u+Δu 

Yes 

Yes 

No 

No 

 

 

 

 

 

 

 

 

 

 

 

End

Output 
Uniform B-spline Surface presentation 

 

 

 
 Figure (3.15): Flowchart of the proposed program depending on Uniform B-spline 

technique 
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The proposed program represents the surface in graphical mode with the 

software program Matlab (V7.0).Figures (3.16), and (3.17), show the final 

result of a practical application of proposed program. 

 
 

Figure (3.16): Uniform B-spline surface k=3,(3x3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.17): Uniform B-spline surface k=4, (4x4). 
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3.6 Chapter Summary 

This chapter has focused on the approximation curves and surfaces for 

Bezier and Uniform B-spline technology. 

Firstly, it has reviewed the equation for the Bezier curve, and made some 

case studies to get several matrices forms Ms (Bezier) starting from 

(n=2,........,6) then reviewed the equation for the Bezier surface, so the 

block diagram, and Flowchart of the proposed program for Bezier 

technique is created. 

Secondly, it has reviewed the equation for the Uniform B-spline curve 

and made some case studies to get several matrices forms  Ms(Uniform B-spline)  

for k=3,4,and derivative of the matrix form for K=5, then reviewed the 

equation for the Uniform B-spline surface and this equation is solved to get 

Uniform B-spline surfaces for K=3,4,5 ,after that block diagram, and 

flowchart of the proposed program for Uniform B-spline technique are 

created. 

However the aim of this chapter is to review the technique for Bezier and 

Uniform B-spline, and get the result as (M) matrices forms for both Bezier 

and Uniform B-spline in different freedom degrees, which will be used in 

the chapter four to implement the subdivision algorithm on these 

techniques. 
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SUBDIVISION ALGORITHMS 
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CHAPTER FOUR 
Subdivision algorithms 

4.1 Introduction: 

This thesis reviews the modeling of subdivision surfaces, although the 

theories behind subdivision surface schemes have been around for more 

than 20 years, only recently have they begun to get full attention. 

For modeling surfaces such as the ones used in geometric modeling, 

there exist many good reasons to employ the subdivision paradigm. 

Subdivision schemes use simple rules to generate high-quality surfaces 

from coarse polygonal models. 

Unlike most competing methods for generating surfaces, subdivision 

allows surfaces of arbitrary topology to be created using one single 

consistent paradigm. There is no need to stitch together different surface 

parts. This makes surface modeling much easier, as there is no fear of 

breaking the borders where patches are stitched together. 

The most important implication for using subdivision algorithm is to 

vary the density of Control points over the surface. This permits the 

creation of small details and bodily limbs without the obligation to add 

numerous control points. Also important for subdivision surfaces is its 

extensive mathematical background, with important links to figure out 

multi-resolution analysis, which have proven their usefulness in many 

scientific fields. The divide-and-conquer approach, furthermore, allows for 

many applications in the field of simulating physical processes [15]. 

Subdivision is a technique in computer aided geometric design for 

approximating a smooth surface by a sequence of increasingly faceted 

polyhedron. Subdivision schemes have several attributes that have 

motivated: The input that a designer or artist provides to the algorithm, 

usually a coarse mesh, is manageable in size and the subdivision iteration 

on the mesh, determined by a simple set of affine combinations, and 

typically results in a smooth surface [19]. 
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4.2 Curves Subdivision: 

This chapter explains the concept of subdivision curves. Studying curve 

properties usually is much simpler than that of surfaces, making it easier to 

gain insights that later can be generalized to subdivision surfaces. 

Moreover, many subdivision surfaces schemes are directly or indirectly 

based on subdivision curve schemes [14]. 

Subdivision methods for curve generation are based upon a procedure 

which successively refines a control polygon into a sequence of control 

polygons that is in the limit, or converges to a curve. The curves are 

commonly called subdivision curves as the refinement methods are based 

upon the binary subdivision of uniform B-spline curves by Chaitin’s 

method, or subdivision for Bezier curve [30]. 

4.2.1 Subdivision and Refinement Uniform B-spline Curve:  

For the Quadratic Uniform B-Spline Curve k=3, the equation for this 

curve with the matrix notation is calculated in chapter three in equation 

(3.34) and it could be rewritten in another form as shown in equation(4.1): 
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…..................(4.1) 

…..................(4.2) 

The matrix M in equation (4.2), when multiplied by  defines 

the quadratic uniform B-spline blending functions 

]uu1[ 2

[32]. 

Splitting and Refinement for the Quadratic Uniform B-Spline Curve 

The binary subdivision of a quadratic uniform B-spline curve  is 

defined by the control polygon {p

)u(p

0, p1, p2} which is illustrated in Figure 

(4.1), containing only three points, and then this is extended to control 

polygons containing larger numbers of points. 
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Figure (4.1) Quadratic uniform B-spline curve (three control points) [32]. 
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A binary subdivision of the curve has been performed, by applying one of 

two splitting matrices in equations (4.4) and (4.5) 
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….................. (4.4) 

….................. (4.5) 

….................. (4.3) 

to the control polygon. When applied to the control polygon  gives the 

first half of the curve, and  gives the second half. As it turns out, several 

of the control points for the two subdivided components are the same. 

These matrices have been combined to create a (4 × 3) matrix in   equation 

(4.6). 

LS

RS
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And it is applied to a control polygon in equation (4.7): 
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  And the refined curve has control points that are positioned as in the 

following illustration in Figure (4.2) i.e. at 1/4 and 3/4 along each of the 

lines of the control polygon. These are the same points as are developed in 

Chaitian's method [32]. 

 

Figure (4.2) The first subdivides stage for the control points to 
Uniform B-spline Curve [32]. 

P0

P1

P2

 

 

 

 

 

 

 

 

 

 

The general procedure is to give a control polygon; it has been generated      

by refinement of this set of points by constructing new points along each 

edge of the original polygon at a distance of 1/4 and 3/4 between the 

endpoints of the edge. The general idea behind subdivision curves is to 

assemble these points into a new control polygon which can then be used as 
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input to another refinement operation, generating a new set of points and 

another control polygon, and then this process continues until a refinement 

is reached that accurately represents the curve to a desired resolution [32]. 

  

For the cubic Uniform B-spline Curve k=4, the equation for this curve with 

the matrix notation is calculated in chapter three in equation (3.35) and it 

could be rewritten in another form in equation (4.8): 
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…........... (4.8) 

….................. (4.9) 

The matrix M which is shown in equation (4.9), when multiplied by 

 defines the cubic uniform B-spline blending functions. ]uuu1[ 32

Splitting and Refinement for the cubic Uniform B-Spline Curve 

The binary subdivision of a cubic uniform B-spline curve  is 

defined by the control polygon {p

)u(p

0, p1, p2, p3}, containing only three points, 

and then this is extended to control polygons containing larger numbers of 

points. Let us consider the new control point in Figure (4.2) is the initial 

control point for the cubic uniform B-spline curve. 

And the splitting matrix matrices can be calculated as shown in equations 

(4.10), (4.11) [30]. 

To gain more experience with this approach, three further examples of 

Chaitian (quadratic B-spline) subdivision are offered [31]. 
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….................. (4.10) 

….................. (4.11) 

    A binary subdivision of the curve is performed, by applying one of two 

splitting matrix and  to control polygon. (When applied to the control 

polygon  gives the first half of the curve, and  gives the second half.) 

LS RS

LS RS

   As it turns out, several of the control points for the two subdivided 

components are the same. Thus, these matrices it have been combined, 

creating a (5 × 4) matrix as shown in equation (4.12). 
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And the new control point for the subdivide polygon is calculated in 

equation (4.13). 
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This generates a new control polygon which serves as the refinement of 

the original. The five control points of this new control polygon specify the 

two subdivision halves of the curve-and therefore specify the curve itself, 

This is illustrated in Figure (4.3).  
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In the case of the quadratic curve, one is able to state exactly a single 

procedure for the points of the refinement. In this case, it is not so easy. 

However, if one examines the rows of the (5 × 4) matrix used in the 

refinement, it is been seen that they have two distinct forms. This motivates 

us to classify the points of the refinement as vertex and edge points; this 

classification makes the description of the refinement process quite 

straightforward [30]. 

P3
P2

P1

P0

Figure (4.3) The Second subdivides stage for the control points to Uniform B-spline 
Curve [30]. 

 

For the Quartic Uniform B-spline Curve k=5, the equation for this curve 

with the matrix notation is calculated in chapter three in equation (3.44) 

and it could be rewritten in another form as shown in equation (4.14): 
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…............ (4.15) 

 

And the splitting matrix for the Quartic B-spline curve:  

is illustrated in equation (4.16): 
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So, the new control points after making the third iteration for subdivision is 

the Quartic Uniform B-spline curve defined by equation (4.17)which is 

defined by Pascal triangle..  
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A new control polygon is generated which serves as the refinement of 

the original. The six control points of this new control polygon specify the 

two subdivision halves of the curve-and therefore specify the curve itself as 

shown in Figure (4.4). 
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P0

P1

P2
P4P3

Figure (4.4) The Third subdivides stage for the control points to quadrtic Uniform    
B-spline curve.  

    For the Quartic Uniform B-spline Curve k=6, the equation for this curve 

is written as shown in equation (4.18). 
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And the splitting matrix for the Quartic B-spline curve: 

is illustrated in equation (4.19) which is defined by Pascal triangle. 
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…............ (4.19) 
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So, the new control points after the fourth iteration for subdivision for the 

Quintic Uniform B-spline curve are defined by Pascal triangle and by the 

following equation  
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Anew control polygon is generated which serves as the refinement of the 

original. The seven control points of this new control polygon specify the 

two subdivision halves of the curve-and therefore specify the curve itself as 

shown in Figure (4.5). 

 

P0
P5P1 P4P2 P3

 Figure (4.5) The Fourth subdivides stage for the control points to quintic Uniform  
B-spline Curve.  
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4.2.2 Subdivision and Refinement of Bezier Curve: 

The Bezier curve representation is one that is utilized most frequently in 

computer graphics and geometric modeling. The curve is defined 

geometrically, which means that the parameters have geometric meaning - 

they are just points in three-dimensional space. It was developed by two 

competing European engineers in the late 1960s in an attempt to draw 

automotive components [24]. 

Refinement for the Cubic Bezier Curve: 

A cubic Bezier patch has a useful representation when written in matrix 

form. This form allows us to specify many operations with Bezier patches 

as matrix operations which can be performed quickly on computer systems 

optimized for geometry operations with matrices. 

This is an unusual representation for many entrepreneurs as it is not 

frequently shown in basic books. So if you have not seen this before it is 

suggested that you begin with the section on matrix representations for 

Bezier curves in which the equations are simpler and easier to     

understand [33]. 

The matrix formulation for cubic Bezier curve which is introduced in 

chapter three in equation (3.12) builds the foundation for our refinement 

curve and is rewritten as [34]. 
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And the refinement process for Bezier curve is illustrated as follows [33]: 

1. When divide the (u) direction from [0-1/2],(as illustrated in 

equations (4.22) and (4.23)): 
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….… (4.22) 

………….. (4.24) 

So, the left splitting matrix is shown in equation (4.24). 
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2. When you divide the (u) direction from [1/2-1]: 

        the right splitting matrix is shown in equation (4.26): 

………….. (4.25) 

………….. (4.26) 
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The Bezier curve before using the splitting matrixes is shown in      

Figure (4.6). 

 

 

P0

Figure (4.6) Bezier curve before using the splitting matrixes to subdivide the 
control   points. 
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The matrix from the equation (4.25) has been used and multiplied with the 

initial control points as shown in equation (4.21),so the result is shown in 

equation (4.27) and illustrated in Figure (4.7). 
………….. (4.27) PSP LL =′  
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(4.7) Bezier curve after used the left splitting matrixes to subdivide the control 
points. 
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The matrix from the equation (4.26) has been used and multiplied with the 

initial control points as shown in equation (4.21),the result is shown in 

equation (4.28)  and illustrated in Figure (4.8) [33]. 
 

PSP RR =′  ………….. (4.28) 
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Figure (4.8) Bezier curve after using the right splitting matrixes to subdivide 
the control points. 
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When both splitting matrix are used and multiplied with initial control 

points the result is shown in Figure (4.9). 
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 Figure (4.9) Bezier curve after using both (right and left) splitting matrixes to 
subdivide the control points.  
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4.3 Uniform B-spline Surface Refinement: 

Recursive subdivision is the process of repeatedly refining an initial 

control polygon P0 in order to produce a sequence of increasingly more 

refined polygons P0, P1, P2, P3, … hence approaching a limit polygon, 

actually a curve [35]. 

Subdivision surfaces are based upon the binary subdivision of the 

uniform B-spline surface. In general, they are defined by initial polygonal 

mesh, along with a subdivision (or refinement) operation which, given       

a polygonal mesh, will generate a new mesh that has a greater number of 

polygonal elements, and is hopefully “closer” to some resulting surface. By 

repetitively applying the subdivision procedure to the initial mesh,              

a sequence of meshes, has been generated that (hopefully) converges to             

a resulting surface. 

As it turns out, this is a well known process when the mesh has a 

“rectangular” structure and the subdivision procedure is an extension of 

binary subdivision for uniform B-spline surfaces [36].  

The Matrix Equation for the Quadratic Uniform B-spline Surface: 

The equation for this surface can be calculated from the general equation  

for Uniform B-spline surface in chapter three equation (3.45).So the 

uniform B-spline surface for K=3 is shown in equation (4.29). 
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And polygon for this surface is illustrated in Figure (4.10) where                

M is 3 X 3 matrixes defined by equation (4.30) and (p) is the initial control 

points shown in equation (4.31). 
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The matrix M (Uniform quadratic B-splie) defines the quadratic Uniform B-spline 

blending functions when multiplied by 
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Figure (4.10): Initial control polygon for the quadratic Uniform B-spline  

Subdividing the Quadratic Uniform B-spline Surface:  

This patch can be subdivided into four sub patches, which are generated 

from 16 unique sub-control points. It has been focused on the subdivision 

scheme for only one of the four the sub patch corresponding to                

[0 ≤ u, w ≤ 1/2] , as the others will follow by symmetry. The Figure (4.11) 

illustrates the 16 points produced by subdividing into four sub patches. The 

initial sub patch that is considered below has been outlined. It should be 

noted that the four “interior” control points are utilized by each of the four 

sub patch components of the subdivision. 
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To define new surface )w,u(P′ , it should be substituted into the equation 

(4.32) and it is yields [36]: 
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From this process, the surface )w,u(P′  in equation (4.34) can be written as. 
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For (3 x 3) control point array (S) .this implies that is a uniform 

quadratic B-spline patch. The matrix (S) is typically called the "Splitting 

matrix", and is given by (4.33), and is shown in equation (4.35): 
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5) ………….. (4.3

   And so the control point mesh P0 corresponding to the subdivided patch 

is related to the original control points mesh by the equation (4.36) 
………….. (4.36)   TSPSP =′

By carrying out the algebra, it has the ( P′ ) given the equation (3.38). 
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…….. (4.37) 

…….. (4.38) 

   So, the refinement Quadratic Uniform B-spline surface is shown in       

Figure (4.11). 

 

 

 

P0,4

P0,3

P0,2

P0,0

Figure (4.11): Initial control polygon for the quadratic Uniform B-spline surface 

and the subdivide polygon when
2
wwand
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where the j,iP′  from the equation (4.37) is rewritten as 
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…….. (4.39) 

   These equations can be looked at in two ways: 

1. Each of these points Pi,j utilizes the four points on a certain face of 

the rectangular mesh, and calculates a new point by weighing the 

four points in the ratio of 9-3-3-1. Thus, this algorithm can be 

specified by using subdivision masks, which specify the ratios of the 

points on a face to generate the new points. In this case, the 

subdivision masks are as follows 

 

 

 

 

 
Figure (4.12) Subdivision masks [36]. 
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2. Each of these equations is built from weighing the points on an edge 

in the ratio of 3-1, and then weighing the resulting points in the ratio 

3-1. These are exactly the ratios of Chaitin’s curve and so this 

method can be looked upon as an extension of Chaitin’s curve to 

surfaces [36]. 

 

Generating the Refinement Procedure 

To generate the subdivision surface, one has to consider all 16 of the 

possible points generated through the binary subdivision of the quadratic 

patch. It is easily seen that each of these points can be generated through 

considering other subdivisions of the patch P (u, w) and can be defined by 

the same subdivision masks [36]. 

 

The Matrix Equation for a Cubic Uniform B-spline Surface  

In the same method for the refinement for quadratic B-spline surface, is 

the refinement for cubic B-spline surface. Catmull and Clark believed that 

study of the cubic case would lead to a better subdivision surface 

generation scheme. 

The equation for this surface can be calculated from the general equation  

for Uniform B-spline surface in chapter three equation (3.45),so the  Cubic 

Uniform B-spline surface for K=4 is written in equation (4.40) below. 
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And polygon for this surface is illustrated in Figure (4.13) where M is 4 X 4 

matrix defined by equation (4.41) and (p) is the initial control polygons 

defined by equation (4.42). 
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The matrix M defines the quadratic Uniform B-spline blending functions 

when multiplied by  
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 Figure (4.13) Initial control polygon for the cubic Uniform B-spline surface [36]. 
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Subdividing the cubic B-spline Surface: 

The cubic uniform B-spline patch can be subdivided into four sub 

patches, which can be generated from 25 unique sub-control points. It has 

been focused on the subdivision scheme for only one of the four (the sub 

patch corresponding to [0 ≤ u, w ≤ 1/2] as the others will follow by 

symmetry). Figure (4.9) illustrates the 16 points produced by subdividing 

into four sub patches. It should be noted that the nine “interior” control 

points are utilized by each of the four sub patch components of the 

subdivision. 

This sub patch can be generated by reparameterizing the surface by the 

variables 2/wwand2/uuwherewandu =′=′′′ substituting 

these into the equation (4.40); one obtains the subdivision polygon and 

refinement the cubic B-spline surface which are shown in equation (4.43) 

and illustrated in Figure (4.14) [9]. 
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From this process, the surface )w,u(P′  can be written as 
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  For a (4 × 4) control point array p′ this implies that is a uniform 

cubic B-spline patch. The matrix S is typically called the “splitting matrix”, 

and is straightforward to calculate from equation (4.45), so it is given by 

equation (4.47) 

)w,u(P′

[9]. 
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  By carrying out the algebra, the new polygon array  has been calculated 

from equation (4.44) and rewritten in the equation (4.48). 
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Each of these points can be classified into three categories – face points, 

edge points and vertex points – depending on each point's relationship to 

the original control point mesh (see Appendix B). The points 

2,20,22,00,0 pand,p,p,p ′′′′  are shown in Figure (4.14) [20]. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure (4.14): Initial control polygon for the cubic Uniform B-spline surface and the splitting 

control points (control polygon) with subdivide the cubic Uniform B-spline surface [9]. 
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To explain the method, the great new polygon point are illustrated by 

equation (4.49).  

4
SR2QP j,i

++
=′  

where Q is the average of the face points of the faces adjacent to the 

vertex point (see equation (4.50), R is the average of the midpoints of the 

edges adjacent to the vertex point (see equation (4.51) and S is the 

corresponding vertex from the original mesh (see equation (4.52). 

…... (4.49) 
 

…... (4.50) 
 

…... (4.51) 
 
…... (4.52) 
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All sixteen points of the subdivision have now been characterized in 

terms of face points, edge points and vertex points, and a geometric method 

has been developed to calculate these points [9]. 

Extending This Subdivision Procedure to the Entire Patch 

The process generated from these rules actually extends to arbitrary 

rectangular meshes. In this case, it has been known that this represents yet 

another subdivision and that eventually, if it keeps refining, this “limit 

mesh” will converge to the original uniform B-spline surface. 

Thus, this process gives us a sequence of meshes, each of which is          

a refinement of the mesh directly above, and which converges to the 

surface in the limit. In the same time the following rules have been 

reviewed to generate the points for the refinement of the surface: 

1. For each face in the original mesh, generate the new face points 

which are the average of all the original points defining the face. 

2. For each internal edge of the original mesh (i.e. an edge not on the 

boundary), generate the new edge points – which are calculated as 

the average of four points: the two points which define the edge, and 

     the two new face points for the faces that are adjacent to the edge. 

3. For each internal vertex of the original mesh (i.e. a vertex not on the 

boundary of the mesh), generate the new vertex points – which are 

calculated as the average of Q, 2R and S, where Q is the average of 

the new face points of all faces adjacent to the original vertex point, 

R is the average of the midpoints of all original edges incident on the 

original vertex point, and S is the original vertex point [10]. 

To implement program to build refinement for Uniform B-spline  surface 

needs to drawing the block diagram which is shown in Figure (4.15) and 

explaining the main steps of the program while the detailed explanation of 

the proposed program is given in the flowchart shown in Figure (4.16). 
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Figure (4.15): Block diagram of the proposed program depending on refinement                             

Uniform B-spline technique. 
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Figure (4.16): Flowchart of the proposed program depending on refinement Uniform               
B-spline Surfaces. 
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4.4 Bezier Surface Refinement: 

A Bezier patch has a useful representation when written in a matrix 

form. This form allows us to specify many operations with Bezier patches 

as matrix operations which can be performed quickly on computer systems 

optimized for geometry operations with matrices [24]. 

The Matrix Formulation for a Cubic Bezier Surface: 

The equation for this surface can be calculated from the general equation 

for Cubic Bezier surface in chapter three equation (3.24), so the cubic 

Bezier surface can be rewritten as equation (4.53) and shown in          

Figure (4.17): 
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Patch Subdivision Using the Matrix Forms: 

When the patch at the point u = 1/2 is subdivided. it reparameterized the 

matrix equation above (by substituting u/2 for u) is reparametrized to cover 

only the first half of the patch, and simplified to obtain the equation (4.54). 
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where the matrix SL is defined before in equation (4.55), so the equation 
result is defined as: 
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   and is identical to the left subdivision matrix for the curve case. So in 

particular, the sub patch P (u/2) is again Bezier patch and the quantity is 

defined by the equation (4.56). 
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)w,u(P′  forms the new polygon points of this patch illustrated in Figure 

(4.18). 
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Calculation of the Second Half of the Patch 

In the same way, the subdivision matrix for the second half of the patch 

has been obtained. First the original surface is reparameterized, and then 

simplified to obtain the equation (5.57). 
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which is identical to the right subdivision matrix in the curve case and     

a matrix has been obtained that can be applied to a set of control points to 

produce the control points for the second half of the patch as illustrated in 

Figure (4.19), and figures out the splitting control polygon for the left and 

the right sides to the cubic Bezier surface in the Figure (4.20).  
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Figure (4.17) Initial control polygon for the cubic Bezier surface.  
 
 

 
 
Figure (4.18) Initial control polygon for the cubic Bezier surface, and the splitting the 

left control polygon when used SL matrix. 
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Figure (4.19) Initial control polygon for the cubic Bezier surface, and the splitting the 
right control polygon when used SR matrix. 

 
 

 
  Implement program to build refinement for Bezier surface needs drawing 

the block diagram which is shown in Figure (4.21) and explaining the main 

Figure (4.20) Initial control polygon for the cubic Bezier surface, and the splitting the 
right and left control polygon when used SL and SR matrix. 
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steps of the program while the detailed explanation of the proposed 

program has been given in the flowchart t shown in Figure (4.22). 

Start  

 

 

 
Input  

the matrix form (M) for Bezier 
surface (n) value. 

 

Input 
the Control points coordinate 

(xi, yi, zi) 
 

 

 

 

 

 

 

Calculate 
the left splitting matrix (SL). 

 

 

 

 

 Calculate 
the Right splitting matrix (SR).  

 

 
Calculate 

the final splitting matrix (S).  

 

 Calculate 
the from equation   

(3.27) 
)w,u(p),w,u(p),w,u(p ziyixi 

 

 
3  
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3  
 
 
 

Calculate the subdivision polygon 

T
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T
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T
xixi

S*)w,u(P*S)w,u(P

S*)w,u(P*S)w,u(P

S*)w,u(P*S)w,u(P

=′

=′

=′

 

 
 
 
 
 
 
 

End 

Output 
Refined Bezier surface with 

(xi', yi', zi') 

 
 
 
 
 
 
 
 
Figure (4.21): Block diagram of the proposed program depending on refinement                        

Bezier technique. 
 

 Start  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Input 
the control points coordinates of surface 

vector (n x m) 

Input 

4 

Input 
the Increment value (Δu, Δw)  

 

the matrix form (M) and (n) value 
for Bezier surface. 
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Figure (4.22): Flowchart of the proposed program depending on refinement Bezier 
Surfaces. 
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  End

Output 
Refined Bezier surface with (xi', yi', zi') 

 Presentation 
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4.5 Loop Subdivision Scheme 

Charles Loop generalized the subdivision rules of a symmetric quadratic 

box-spline over a regular triangulation to include rules to be applied in the 

vicinity of extraordinary points. The limit surface is C2 continuous 

everywhere except at the extraordinary points, where it is only C1.  The 

extraordinary point at the surface exhibits a continuous tangent plane, as 

long as the weighting factors stay between certain limits. Although part of 

Loop's motivations were based on intuition, it turned out that the rules that 

he considered as optimal still survive today as being the most suited for 

stationary triangular subdivision  [37]. 

In Figure (4.23), four consecutive steps of the Loop subdivision scheme 

of a triangle are shown. Each time all existing triangles are divided into 

four smaller triangles. 

                      Figure (4.23) Four steps in the subdivision of a triangle [14]. 

The mathematics for this method is can be explained briefly by choosing 

locations for new vertices as weighted average β  of original vertices in 

local neighborhood in equations (4.59) and (4.60). 

 

⎪
⎩

⎪
⎨

⎧

=

>
=β

⎜
⎜

⎝

⎛

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎟
⎠
⎞π+−=β

3n
16
3

3n
n8
3

n
2cos

4
1

8
3

8
5

n
1 2

………… (4.59)  

 

 ………… (4.60) 
 

 

  n is the vertex of valances in loop scheme, the rules for extraordinary 

vertices and boundaries are illustrated in Figure (4.24:a,b) 
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 (a) 

 

 

 

 

 

 

 

 

(b) 
Figure (4.24: a, b): Rules for extraordinary vertices and boundaries [13]. 

4.6 The Butterfly Scheme 

The structure of the meshes created by the Butterfly algorithm is very 

similar to the meshes created by Loop’s scheme. It also creates new points 

by splitting the edges into two, followed by a relaxing step. The averaging 

masks used are quite different, however. The vertex-points always stay in 

their original position, which causes this scheme to be an interpolating one. 

The averaging mask for the newly inserted edge-points is depicted in 

Figure (4.25) the form of this mask resembles a butterfly, hence the name 

of the scheme. The limit surface is differentiable everywhere except at 

extraordinary points of valence n = 3 and n >= 8. Although the surface is 

tangent plane continuous at extraordinary points of valence n >= 8, the 
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surface is not regular as it has self-intersections, the algorithm is illustrated 

in Figure (4.25) and equation (4.59). 

 
Figure (4.25): Situation around a newly inserted edge point for the interpolator Butterfly 

scheme. 

   And the main formula to determin the new points Q is determined by the 

equation (4.61) [5]. 

)PPPP(w)PP(w2)PP(
2
1Q 87654321 +++−+++=  ………… (4.61) 

4.7 Hexagon Subdivision Surface: 

In order to search for the most interesting values for the subdivision 

weights, the following considerations are regarded. Firstly, the support area 

should be small such that every control point exhibits only a local 

influence. Therefore, one gets solutions that are restricted to using the 

points of the polygon in which the new points are created. Furthermore, 

just as in existing schemes, it makes sense to look for a symmetrical 

scheme, invariant to the order in which the points are considered and let all 

points play an equal role. For the standard mesh (hexagons where every 

point has valence 3), these considerations lead to the existence of three 

different weights (see Figure 4 .26): 

- one for the two points closest to the new point (a), 

- another weight for the two points in the middle (b), 

- and a third weight for the two furthest points (c). 
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Figure (4.26): The position of the new point P is a weighted average of the points of the 

surrounding hexagon. 
Expressed using these factors, the equation for the new point is then written 

in equation (4.62). 
………… (4.62) 

654321 cpcpbpbpapapP +++++=  

Another consideration is that for an input configuration of all equal 

regular hexagons, the new points should be located such that all newly 

created small hexagons are again exactly equally sized. As for each input 

hexagon, three new hexagons are created, and the area of the new hexagons 

has to be equal to one third of the area of the original ones. To obtain this, 

the sides of the hexagons have to be divided by a factor of ( 3/1 ). Due to 

the symmetry of the regular hexagons, this is only possible if the weight is           

(c = a - 1/3). 

For the scheme to be invariant under affine transformations, the sum of 

these weights should be equal to one: (2a + 2b + 2c = 1). So, together with 

the condition on(c), this condition leads to (b = 5/6 - 2a). Putting all this in 

a matrix, and getting the subdivision matrix S ′′  it's defined by equation       

(4.63) [14]: 
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4.8 Catmull-Clark 

 The subdivision scheme for cubic B-splines a tensor-product definition. 

This approach is nicely defined on regular quadrilateral meshes and can be 

executed in two separate passes. First, the curve scheme is executed in one 

direction, followed by a second pass in the orthogonal direction. Catmull 

and Clark's most important innovation was the extension of the scheme 

allowing it to cope with non-regular meshes. In the regular setting, the 

mesh consists solely of quadrilaterals and all vertices have a valence of 

four, they observed that they could split faces that are not quadrilaterals in 

a similar way as the faces that are split in the regular case. Just a point is 

added in the center of the face and connected it to the center of every edge. 

This ensures that starting from the first subdivision step, all generated faces 

are quadrilaterals. Also newly generated points at the centers of the edges 

nicely get a valence of four. Only the centers of input faces that were not 

quadrilaterals lead to the creation of an extraordinary vertex. This implies 

that the number of extraordinary vertices stays constant, namely one for 

each extraordinary vertex in the input mesh and one for each face that was 

not a quadrilateral; Figure (4.27) illustrates this subdivision algorithm. 
 

 
 
 
 
 
 
 
 
 
Figure (4.27): Subdivision around a central vertex V0, showing surrounding control 
points (Qi), edge points (Ei) and face points (Fi) [7]. 

An initial vertex V0 is surrounded by n edges, leading to n neighbor 

vertices Qi. A first step in the subdivision process is to insert so-called face 

points Fi at the centers of the faces. 
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Then, for every edge a so-called edge point Ei is calculated as the mean 

between the two vertices and the two face points of the faces that make up 

the edge. 

    Finally, the positions of the existing vertices are relaxed by averaging 

them with their neighbors in the following way. V1 is the position of V0 

after the first subdivision step and is calculated from the formula (4.64): 

∑∑ ++
−

= ο i2i2i F
n
1Q

n
1V

n
2nV   ……….. (4.64) 

After using these rules for face points, edge points and vertex points, 

new faces are formed. First the existing edges are split using the edge 

points and the new vertex points, and then new faces are formed by 

connecting the edge points to the face points [7]. 

4.9 Doo-Sabin 

This scheme, is also based on a tensor product for subdivision curves. 

Instead of cubic curves, Doo and Sabin used quadratic curves. This leads to 

quite simple rules. Only one type of new point is introduced, at the center 

of a quadrilateral formed by an existing vertex, two edge points and the 

center of the face. This effectively shrinks the existing faces to half their 

original size. In order to close the mesh again, also new faces are put 

around the old vertices and edges. This has the visual effect of cutting away 

the corners of the polygonal mesh. The mesh obtained is the dual of the 

mesh from the Catmull-Clark scheme, interchanging the roles of points and 

faces.In Figure (4.28) the Doo-Sabin subdivision process is illustrated for            

a polygon with five vertices [5]. 

 

 
 
 
 
 
Figure (4.28): Left: An input polygon with surrounding edges. Right: The new faces 

created by one subdivision step of the Doo-Sabin algorithm. 
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4.10 Chapter Summary 

This chapter has focused on the Chaitin's subdivision algorithm, Linear 

Algebra, is the mathematical basis for Catmull Clark and Doo-Sabin 

subdivision method. 

Firstly it explains the curve refinement by Chaitin's algorithm, So it has 

been concentrated on Subdivided the Uniform B-spline curve starting from 

subdivide the Uniform quadratic B-spline curve to arrive to Quintic 

Uniform B-spline curve, because it will be the basis for our practical 

principles to generate the profile shape for extrusion process in chapter 

five, after that it explains refinement for Bezier curve and it lets cubic 

Bezier curve be the case study to explain this method. 

Secondly the work continues with Chaitin's  algorithm to demonstrate 

the Uniform B-spline surface refinement ,and Bezier surface refinement, by 

taking Cubic polynomials for both surfaces (Bezier and Uniform B-spline), 

and the case study explains subdivision algorithm, then Block diagram, and  

Flowchart for Bezier and Uniform B-spline surfaces are built. 

Thirdly it givens the guidelines for the more complex subdivision 

algorithm (Loop Subdivision Scheme, Butterfly scheme, Hexagon 

subdivision surface, Catmull-Clark algorithm, and Doo-Sabin algorithm). 

And these subdivisions algorithms are summarized in the table (4.1) Note 

that Chaitin's algorithm is omitted in this table because it's implied in 

Catmull-Clark , and Doo-Sabian algorithm. 
                         Table (4.1) Classification of the subdivision surface algorithm. 

Primitive (face-split) Dual (vertex-split)  

Triangles Quadrilaterals Quadrilaterals 

Approximating 
(not interpolating original 

vertices) 

Loop Scheme Catmull-Clark Doo Sabian Midedge 

Interpolating 
The original vertices 

Butterfly Scheme Kobbelt 
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CHAPTER FIVE 
Testing the Subdivision Algorithm in Production Field 

This chapter investigates and evaluates the proposed CAD, CAM, and 

theoretical die design profile, there is no doubt that any developed method 

or technique that tries to solve any kind of problem should be tested ,In our 

case the subdivision algorithm is developed and  employed in production 

field.   

The practical part of this research has been done in these listed points: 

1. The die design theory of Constant Ratios of Successive Generalized 

Homogeneous Strain Increments (CRHS) was implemented on one 

problem as case study (in order to design the optimum die profile), 

then a asymptotical die profile was made which was designed via 

CRHS, by using two approximation techniques after modifying it by 

subdivision algorithm . 

The First approximation technique is the quartic Uniform B-spline curve  

(with six control points) which is developed from cubic Uniform B-spline 

curve after third iteration, and the second is Quintic Uniform B-spine curve 

(with seven control points) which is developed from cubic Uniform B-

spline curve after fourth iteration .The reason for developing this 

subdivision algorithm is to increase the degree for the curve and get the 

control points set on the curve especially after the second iteration, so that 

will reduce the chance to get the error for identity. These curves with the 

curve result from the CRHS method. 

2. Create surfaces from the curves proposed; these surfaces are half die 

for direct extrusion die process. 

3. Find the mean curvature and the radius of curvature for each case. 

4. Find the minimum radius of curvature (to find the optimum tool 

radius for finishing process theoretically). 
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5. Find the deviation for each surface proposed above (the deviation 

between the surface before exposure by machining process and after 

this process). 

6. Find the maximum and the minimum deviation for each surface. 

7. Create toolpath for each surface, which generates the interior data of 

the desired surfaces by Matlab (V7.0) software to represent the 

desired surface in graphical mode. 

8. Import the toolpath from Matlab (V7.0) software to Surfcam 

software as DXF extension (Design Matlab software to make the 

converter from Matlab Software to Surfcam Software). 

9. Make simulation by surfcam software to manufacture these surfaces 

with the manufacturing parameters which are calculated before (like 

the cutter radius). 

10. Obtain the G-codes from the surfcam software. 

11. Design software to import the G-code result from surfcam program 

as NCC file to Matlab program (the reason for this software is to 

shifting the zero coordinate to the stock (block) corners or out of the 

stock coordinate with defined value, because the surfcam program 

fails to do this option) that greatly simplifies the machining process 

for the operator. 

12. Import the modified NCC file to surfcam software then make 

simulation depend on the G-codes modified. 

13. Implement the final G-codes result for these three surfaces generated 

by Matlab program, on CNC machine (Hermle C30U dynamic,        

5-axis AC-kinematics, with specification of linear motor drives 

(60.000 m/min), motor spindle 37kw 28.000 rpm) and controlled by 

Siemens 840D,and the position error was below 0.002mm This 

machine belongs to the Technical University Darmstadt (Germany). 
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5.1 Dies Designed According Rational Concepts 

In this concept, the design of tool is directly linked with the lessening of 

the severity of the operation to ensure the flow lines of the metal are 

smooth and do not suffer unnecessary discontinuities. In any forming 

process the pattern of the deformation depends either on the order in which 

the magnitude of the successive ratios of generalized strain increments 

varies along the pass, or on the variation in the strain rate itself. Therefore 

if a constant rate of either of these parameters can be maintained 

throughout the operation, the likelihood of the incidence of flow 

discontinuities will be reduced. The characteristics of the worked material 

and the mechanics of the process will dictate which of the two parameters 

is likely to be of greater importance in any given case. 

The possible basis of tool design can be associated with two modes of flow: 

1. Constant Ratios of Successive Generalized Homogeneous Strain 

Increments    (CRHS). 

The geometry of the pass in this concept depends on the variation in the 

dimensions of the workpiece and consequently on that of the generalized 

homogenous strain .  The manipulation of this variation affords means of 

controlling the flow. 

Hε

2. The Constancy of the Mean Strain Rate (CMSR) 

The concept of constancy of the mean strain rate is defined analytically as 

===−−−−−== − nn εεεε &&&&
121 Constant 

Where is ε& the mean strain rate. Since many engineering materials are 

susceptible to the effects of the strain rate at both low and elevated 

temperatures, the use of strain rate as a basis for tool design could be 

potentially advantageous [6]. 

This thesis has focused on (CRHS) concepts to make the die profile for 

extrusion process, and build the theoretical side for this thesis. 
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5.1.1Constant Ratios of Successive Generalized Homogeneous Strain 

Increments (CRHS) 
This concept depends on the following assumption which says "the ideal  

geometric shape for the extrusion die :is the geometric shape which was 

designed to get the effect for resultant homogenous strain (which is needed 

to make forming process) from the total plastic strain ( that means there is 

no resultant for non-homogenous  strain),and in another words: is the ideal 

geometric shape which does not generate any sheared deformed in the  

sample formed and that is the main aim for any design to the die forming 

process. 

So, the CRHS concept  depends on the general resultant homogenous 

strain for the forming process, for that reason equation (5.1) has been used 

to calculate the general homogenous strain, which it is assumed neglects 

the value for the elastic strain especially when it is compared with the 

plastic strain value. 

( ) ( ) ( )[ ]
2/1

2
xz

2
zy

2
yxh dddddd

3
2d ε−ε+ε−ε+∈−ε=ε  

hdε = total homogenous strain 

And assume the volume for the material is staying constant before and after 

the forming process. 

… (5.1) 

…................ (5.2) 0ddd zyx =ε+ε+ε  
Or: 

0zyx =ε+ε+ε  
And substitute equation (5.2) in equation (5.1), then integral it, so the 

equation result is (5.4): 

…................ (5.3) 

…................ (5.4) ( ) 2/1
2
z

2
y

2
xh 3

2
ε+ε+ε=ε  

Equation (5.4) is the mathematical expression used to calculate the total 

homogenous strain. This expression is used principally in die                
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design depending on CRHS concept, and this equation contains three 

components for the homogeneous strain: 

a. Longitudinal Strain xε . 

b. Radial Strain . yε

c. Circumferential Strain zε . 

The condition constant homogenous strain rate can be verified by equation 

(5.5) [39]: 

S....
2n1n

1nn

1h2

2h3h

0h1h

12h

hh

hh

h

h
=

ε−ε

ε−ε
==

ε−ε

ε−ε
=

ε−ε

ε−ε

−−

−  

where: 

hn
ε =is the homogeneous strain at any section (n) for die profile. 

S: constant, which determines the rate of deformation. 

Three basic rates are adopted for this they are S= 0.8, S =1, and               

S =1.2.but in this thesis S=0.8 is value which is used. That means the rate 

of deformation is Decelerated (D), and the profile shape result which 

appear is the same as that of DCRHS (as shown in Figure (5.1)). 

In any specific physical situation, equation (5.4), when integrated can be 

represented as logarithmic equation (5.6) 

( ).Zln nhn
=ε  

nZ = is a function that reflects the dimensions of the workpiece in section 

(n) of the pass (bar with rounded section has been used in the case study). It 

is clear that in section 0, which corresponds to the entry to the pass, 0
0h =ε  

and therefore . 1Z0 =

When use the bar with rounded section at the section (n) is used as        a 

workpiece in deformation area, the value of zyx ,, εεε  for the bar with 

rounded section can be calculated as follows: 

…................ (5.5) 

…................ (5.6) 

…................ (5.7) 
A

dAd x =ε  
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where A is the area at any section: 

R
dR.2

R.
dR.R.2d 2x =

π
π

=ε∴  

And integration is made for the equation (5.8) along all the profile length: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ε=ε ∫

n

0
R

R
xx R

Rln.2d
n
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n
 

where 

 R0: is the initial radius for the bar which we need to formed it (the entire 

for die profile) see figure (5.2). 

Rn: is the bar radius at (n) section along all die profile. 

nxε : the Longitudinal Strain at the (n) section along all die profile. 

Assume the volume for the material is constant: 

0
nnn zyx =ε+ε+ε  

For the bar (rounded section): 

nzny ε=ε∴  

And that means 

2
.2 n

nnn

x
yy.x

ε
−=ε⇒ε−=ε∴  

And substituting equation (5.9) in equation (5.12) gives: 
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And substituting equation (5.13) in equation (5.4) yields: 

…................ (5.8) 

…................ (5.9) 

…................ (5.10) 

…................ (5.11) 

…................ (5.12) 

…................ (5.13) 

…................ (5.14) 
2

n

0
h R

Rln
n ⎟⎟
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⎞
⎜⎜
⎝

⎛
=ε  

By make comparison between the equation (5.6) and the equation (5.14):  
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         01 CRR =

C: is a constant value always (C < 1) and the range for this value is        

(0.9-0.99) 

So, from equations (5.16) and (5.17) 
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And when we substitute the equation (5.6) in equation (5.5) [39]: 
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Figure (5.1): The geometric shape (for the Forward Extrusion) dies profile designed 
by CRHS [6]. 
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 Figure (5.2): The shape for the Die, and the way to divide the Die profile to (n) 
sections (for Forward Extrusion), to design the Geometric shape for the 
Die by CRHS concepts [6]. 
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5.2 Curvature Algorithm 

The curvature of the surface may be expressed as the rate of change in 

the direction of the tangent vector with respect to the arc length. So there 

are many different ways to calculate the curvature for the surfaces, which 

are widely used in designing and manufacturing free form surfaces. 

  Let k1and k2be the principal curvatures, then their mean is 

)kk(
2
1H 21 +=  …................ (5.24) 

H: is called the mean curvature. 

 Let R1 and R2 be the radii corresponding to the principal curvatures, 

then the multiplicative inverse of the mean curvature H is given by the 

multiplicative inverse of the harmonic mean

21

21

21 RR2
RR

R
1

R
1

2
1H +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  …................ (5.25) 

To calculate the curvature in regular patch (let ) 3RU:x →

)FEG(2
EgFf2GeH 2−

+−
=  …................ (5.26) 

where E, F and G are coefficients of the first fundamental form and e, f and 

g are coefficients of the second fundamental form [40]. 

The best test for the curvature equation is the sphere shape; the curvature 

value should be equated at any radius for circle in this sphere. So, the 

logical explanation for the constant color in any radius of circles, and 

difference from another radius is the curvature which is equal for the same 

radius of circles and different when the radius is different (decrease or 

increase the radius) as shown in Figure (5.3). 

 

 

 

 

http://mathworld.wolfram.com/PrincipalCurvatures.html
http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/PrincipalCurvatures.html
http://mathworld.wolfram.com/MultiplicativeInverse.html
http://mathworld.wolfram.com/MultiplicativeInverse.html
http://mathworld.wolfram.com/HarmonicMean.html
http://mathworld.wolfram.com/FundamentalForms.html
http://mathworld.wolfram.com/FundamentalForms.html
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 Figure (5.3): The sphere shape which explains the difference in the curvature value 
when the circles radius is different and the curvature has constant value 
at the same radius value.  

 

5.3 Radius of Curvature 

To calculate the radius of curvature for the curves or surfaces, means we 

should calculate the radius of curvature for all the surface points. 

For the tool with ball tip, we will talk about the sphere tip, given a set of 

points; we find the center and radius of a sphere that fits the points best 

In n dimension, points nRx∈  on a sphere with center and radius nRc∈

0r > are characterized by 
22 cxr −=  …................ (5.27) 

Equivalently, 
…................ (5.28) 22

i
2
i

2
ii xxcrcx2 ==−+ ∑∑∑  

where the summations are over j=1, 2, 3…n. Now, only consider the cases 

n=2 and n+3, and given a set of m points 
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}m,...,2,1k:R)x..,,.........x(x{ nk
n

k
1

k =∈=  

To obtain the center of the fitting sphere c= (c1…cn), the following system 

has been solved for linear equations in the least square sense [41]
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Then, the radius of the sphere is 
…................ (5.30) 2cRr +=  

If the matrix above does not have maximum rank, we define  [42]. 

 

 
Figure (5.4): The radius of curvature for some points on the designed profile. 
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5.4 Toolpath Design 

A vertical three-axis CNC milling machine is the appropriate system for 

machining the surfaces. In order to generate the desired shape, the cutter 

must be moved so as to remain tangent to the surface created by the sliding 

of the profile curve along the trajectory curve. A tool commonly used for 

generating free-form surfaces is a spherical end-milling cutter, which has 

the convenient property that the center of its spherical end remains at          

a constant distance from the generated surface, while the tool axis 

maintains a vertical orientation. 

A convenient tool center path, corresponding to one pass in the 

machining process, consists of a series of small lines of prescribed length 

along the profile's offset, followed by offset motion along the entire length 

of the trajectory curve, until the end of the profile curve is reached, see        

Figure (5.5) [43]. 

 

 

 

 

 

 

 

 

 

 
Figure (5.5):The tool-paths in XZ-plan (Front View) [42]. 
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The necessary steps for this motion are generated, using as data input the 

following: 

• the coordinates of the surface defining the profile curve. 

• the tool-radius, 

• the step size, 

• the distance between scallops. 

• the federate  

The programmed distance between scallops is used to determine when to 

switch from motion generation along the profile curve to the motion 

generation along the trajectory curve [43]. 

A spherical cutter permits gouge-free machining of nonconvex surfaces if 

the cutter radius is less than the minimum concave principal radius of 

curvature on the surface obviously [44], as shown in equation (5.31) [45]. 
…................ (5.31) 

minfR ρ≤   

minρ : the minimum radius of curvature of the over all surface. 

fR : radius of finishing cutter. 

The cutter radius and the updated offset distance should be less than the 

minimum concave radius of curvature on the profile and the trajectory 

curves, respectively. By choosing a tool with a sufficiently small radius, the 

program can accommodate the considered surfaces [tool-path]. 

In fact, given information about cutter deflection, machine tool chatter 

and tool breakage will increase the tool life and surface integrity can be 

optimized in selecting appropriate cutting conditions. In milling, a lot of 

parameters are saved to be considered for any optimization attempt. These 

parameters concern the tool (geometry material), the tool path (path 

description, path length, and accessibility), and the tool engagement in 

workpiece (depths of cut, cutting modes), the kinematics (spindle 

frequency, feed velocity) and the lubrication conditions (lubricant type and 

flow or no lubrication) [43]. 
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The tool center points are offsets of the tool surface, contact points in the 

surface normal directions by the tool radius. Coordinates of the tool tip 

points can then be obtained by translating the center points in the tool axis 

direction. The uncut region between successive tool cut is usually called 

scallop [39]. Scallops are the main factor which influences machining 

quality. Finishing operation process generally requires that the scallop 

height does not exceed 0.05millimeters. With a given diameter of ball-end 

mill, the distance between two tool paths is computed in terms of the value 

of scallop height. For example, in the case of planar ball-end milling (see 

Figure (5.6)) the value of stepover can be calculated according to the 

formula in equation (5.32) [46]. 
2hDh2s −=  …................ (5.32) 

 s: The value of stepover, D: The diameter of ball mill, and h: Scallop 

height .Therefore, using a ball-end mill with given diameter dimension, 

produces much higher density of tool paths in convex regions than in 

concave regions when making the finish cut. This means that the overall 

productivity and material removal rate of ball-end mill finish surface 

machining is very low [46]. 

 

 

 

 

 

 

 

Figure (5.6): Ball-end mill surface machining [46]. 

(b) Step, scallop and diameter for 
ball-end milling (a)Ball-end milling

 

 

 



CHAPTER FIVE Testing the Subdivision Algorithm in Production                 106
Field 

This thesis has used scallop height value  exceed 0.05millimeters 

(approximately 0.4 millimeters) so that means the process which adopted is 

semi finishing process to reduce the milling process time  and it is 

positively affects on milling process cost. 

Most complex shapes fall within categories of 3D it is requiring 

movement of three axes in machining process. So to draw the toolpath for 

the shape which is shown in Figure (5.7), the toolpath has been designed in 

U-direction or in W-direction. Artificially the tool path should be designed 

for the longer dimension, but in some special cases (like making some 

experiments in laboratory), they need to design the tool path in another 

direction for special reasons of research [47], Figure (5.8: a, b) illustrates the 

tool path in U and W direction. 

 

Figure (5.7): Bezier surface n=3, [48]. 
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Figure (5.8: a, b): Three dimension toolpath 
                 a- In U-direction.  
                 b- In w-direction.   
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Case study: 

Design the extrusion die depending on the theoretical concept (CRHS) and 

explain which type of CRHS will result with the information listed below: 

8.0S
mm13L

15R;mm5.22R f

=
=

==ο

 (Distance from die inlet). 

Depending on the CRHS concept: 

To find Zn at the point (n=13), we should use equation (5.15) 

25.2Z
15

5.22Z

12

2

12

=

⎥⎦
⎤

⎢⎣
⎡=  

And the Z1 is calculated from the equation (5.23) 

Z1=1.18723 

And again from the equation (5.15) we calculate R1

mm65.20R
Z
RR

1

2/1
1

1

=∴

= ο

 

So, we continue in the same calculation to find Z2 from equation (5.23). 
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And to calculate R2 from equation (5.15) 
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So, we continue in this calculation to find Z, R, at every L (Distance from 

Die inlet). 
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      Table (5.1): Calculate the R, Z, at every L for Forward Extrusion Die Profile by CRHS concept

n X(mm) Zn Rn(mm) 
1 1 Z0 1 R0 22.5 

2 2 Z1 1.18723 R1 20.65 

3 3 Z2 1.36195 R2 19.28 

4 4 Z3 1.52007 R3 18.249 

5 5 Z4 1.65968 R4 17.465 

6 6 Z5 1.78055 R5 16.862 

7 7 Z6 1.88355 R6 16.394 

8 8 Z7 1.97023 R7 16.03 

9 9 Z8 2.04243 R8 15.744 

10 10 Z9 2.10209 R9 15.519 

11 11 z10 2.15107 R10 15.341 

12 12 z11 2.19108 R11 15.2 

13 13 z12 2.25 R12 15.089 

From this table we find that is  

Zn=2.25 

Rf: 15.089mm (Final radius for die Profile) 

Ln: 13mm (Distance from die inlet) 

And n: 13 (number of sections for die profile for forward extrusion 

process). 

The die profile results from this R mm and L mm is shown in Figure (5.9). 
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 Figure (5.9): Design the Geometric shape for the Die profile by CRHS concepts, the 
shape result is DCRHS, (for Forward Extrusion). 
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From the comparison between the curve result in Figure (5.9) and the 

curves in Figure (5.1) is noted that the curve in Figure (5.9) is DCRHS type 

and note the die geometry which was designed before in Figure (5.9) see 

Figure (5.10). 

 

 

 

 

 

 

 

 
The curve in Figure (5.9) has been drawn again by using Uniform         

B-spline curve with subdivision iterations to get more control points and to 

arrive to the same curve geometry by trial and error method, so firstly it is 

draw with Quartic Subdivision for Uniform B-spline curve (that means 6 

control points plotted on the curve) as shown in Figure (5.11) and the 

surface result is shown in Figure (5.12).   

 

 

 

 

 

 

 

 
 

Figure (5.10) Geometric Die design for Forward Extrusion process depends on 
CRHS concepts with Die profile length 13mm. 

Figure (5.11): Drawing the Geometric shape for the Die profile which is designed by 
CRHS concepts, the shape result is DCRHS, (for Forward Extrusion), 
drawing by Quartic Subdivision for Uniform B-spline Curve. 
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Secondly the same curve in Figure (5.9) is drawn with Quintic 

Subdivision for Uniform B-spline curve (that means 7 control points plated 

on the curve) as shown in Figure (5.13) and the surface result is shown in 

Figure (5.14).   

 

 

 

 

 

 

 

 

 
Figure (5.13): Drawing the Geometric shape for the Die profile which is designed b

CRHS concepts, the shape result is DCRHS, (for Forward Extrusion), 
drawing by Quintic Subdivision for Uniform B-spline Curve. 

Figure (5.12) Geometric Die design for Forward Extrusion process depends on 
CRHS concepts with Die profile length 13mm drawing by Quartic 
Subdivision for Uniform B-spline Curve. 
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Figure (5.14) Geometric Die design for Forward Extrusion process depends on 
CRHS concepts with Die profile length 13mm drawing by Quintic 
Subdivision for Uniform B-spline Curve. 

The difference in the shape geometry for these three curves (CRHS 

curve, Quartic Subdivision for Uniform B-spline Curve, and Quintic 

Subdivision for Uniform B-spline Curve) for the same design, it is noted in 

Figure (5.15). 

 

 

 

 

 

 

 

 
Figure (5.15): Find the difference in the shape geometry for these three curves 

(CRHS curve, Quartic Subdivision for Uniform B-spline Curve, and 
Quintic Subdivision for Uniform B-spline Curve). 
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So the mean curvature for these three proposed technique  is shown in 

Figure (5.16),and Appendix (C), the radius of curvature is shown in Figure 

(5.17) and Appendix (D) ,and the toolpath generated for each technique is 

shown in Figure (5.18),and the optimum cutter diameter for each surface 

machined is illustrated in Figure (5.19), to calculate the maximum and 

minimum deviations of these three shapes after calculating the deviation 

shown in Figure (5.20),and deviation in three x-axis section in Figures 

(5.21),(5.22),and (5.23). 

Deviation =Zf - Za

Zf=value for the desired surface in (z-dir). 

Za=value for machined surface in (z-dir). 

In the same time it has been shown the line segments in Figures (5.24), 

(5.25), and (5.26) for these three surfaces submitted before. 
Table (5.2): The result Comparison between the surfaces presented above 

Results Comparison 

NO# Parameters CRHS 
Quartic subdivision 

for Uniform B-spline.  

Quintic subdivision  

for Uniform B-spline.  

1 

Max deviation(between the 

deserved surface and surface 

machined) 

inf inf inf 

2 
Min deviation(between the 

deserved surface and surface 

machined) 
-5.0935 -12.4576 -4.6505 

3 Max mean curvature 0.22 0.22 0.575 

4 Min mean curvature -0.02 -0.08 -0.15 

5 
Suitable cutter radius for semi 

finished process. 
4 mm 5 mm 3 mm 

6 
Number for segment of toolpath 

interpolator 
850 512 942 

7 Points in domain 5992 5985 5992 

8 
Length of segment for toolpath 

interpolator (total toolpath length). 
1780.291 1433.2474 2015.7892 
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Figure (5.16: a, b, and c): The mean curvature. 
                 a- Main curvature for CRHS method.  
                 b- Main curvature for Quartic Subdivision for Uniform B-spline technical. 
                 c- Main curvature for Quintic Subdivision for Uniform B-spline technical. 
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Figure (5.17: a, b, and c): The radius of curvature drawing. 
      a- The radius of curvature for CRHS method.  
      b- The radius of curvature for Quartic Subdivision for Uniform B-spline technical. 
      c- The radius of curvature for Quintic Subdivision for Uniform B-spline technical. 
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Figure (5.18: a, b, and c): The toolpath generated. 
      a- The toolpath for CRHS method.  
      b- The toolpath for Quartic Subdivision for Uniform B-spline technical. 
      c- The toolpath for Quintic Subdivision for Uniform B-spline technical. 
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Figure (5.19: a, b, and c): The cutter ball dimension. 
      a- The cutter dimension for CRHS method.  
      b- The cutter dimension for Quartic Subdivision for Uniform B-spline technical. 
      c- The cutter dimension for Quintic Subdivision for Uniform B-spline technical. 
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Figure (5.20: a, b, and c): The deviation between the desired surface and surface after 
machined. 

      a- The Deviation for surface generated by CRHS method.  
      b- The Deviation for surface generated by Quartic Subdivision for Uniform B-

spline technical. 
      c- The Deviation for surface generated by Quintic Subdivision for Uniform B-

spline technical. 
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Figure (5.21): The deviation between the desired surface and the machined 

surface at x=5, 15, and 30 for surface generated by CRHS method.     

  

 

 

 

Figure (5.22): The deviation between the desired surface and the machined 
surface at x=5, 15, and 30 for surface generated by using Quartic 
subdivision algorithm to Uniform B-spline technical.    
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Figure (5.23): The deviation between the desired surface and the machined 
surface at x=5, 15, and 30 for surface generated by using Quintic 
subdivision algorithm to Uniform B-spline technical.    

 

 
Figure (5.24): The line segment for toolpath generated by CRHS method.    
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Figure (5.25): The line segment for toolpath generated by Quartic subdivision 

algorithm to uniform B-spline technical.    

 

 

 
Figure (5.26): The line segment for toolpath generated by Quintic subdivision 

algorithm to uniform B-spline technical.    
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After designing the toolpath by using Matlab (V7.0) software, with DXF 

file extension (after converting it from m file extension by Matlab 

software), it has been exported to surfcam program as shown in Figure 

(5.27). 

 Figure (5.27): Import the DXF file extension to Surfam design file. 
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The machining parameters for this process (roughing and semi-finishing) 

are illustrated in Table (5.3).  
Table (5.3): Surfcam cutting options summary sheet 

Stock material :UREOL (EPOXY RESIN) 

NO# Machining parameters CRHS 

Quartic 

Subdivision for 

Uniform B-spline. 

Quintic 

Subdivision for 

Uniform B-spline. 

1 
Cutter radius for semi finishing 

process. 
4 mm 5 mm 3 mm 

2 
Cutter radius for roughing 

process. 
4 mm 5 mm 3 mm 

3 Cutter travel length (m) 327 208 363.5  

4 Spindle speed 14000 14000 18000 

Min:0.382 Min:0.5073 Min:0.1432 
5 Feed rate (m/min) 

Max:10.000 Max: 10.000 Max: 10.000 

6 Cutter material        (ball nose) HSS HSS HSS 

7 Flutes 2 2 2 

8 Min X for stock (mm) 0 

9 Min Y stock  (mm) 0 

10 Min Z stock  (mm) 0 

11 Max  X for stock  (mm) 90  

12 Max Y for stock  (mm) 42 

13 Max Z for stock  (mm) 45 

14 Block number 4970 3204 5459 

15 Program size (byte) 128742 81902 143092 

16 Toolpath type (cutting strategy) Zig-Zag toolpath for roughing and semi finishing process. 

17 Axial in feed (mm)  5 

The main problem for surfcam software is the zero coordinate for the 

stock will be in the middle of the stock (because the shapes are 

symmetrical) which is illustrated in Figure (5.26), and that the machining 

side fails, because the zero coordinate should be in the out of the stock 

(with defined value) or in the any corner for the stock. For that reason 

Matlab program has been used to shift the zero coordinate to the defined 

corner (the surfcam software fails to do this option), and define the base for 

stock as xy-plan and the Z-direction is the cutting direction (note: the result 
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in the Table (5.3) is after making Matlab modification for the coordinates 

as shown in Figure (5.28)).And the simulation for the G-code result is 

shown in Figure (5.29) and Appendix (E). 
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Figure (5.28): The stock base is XY-plane, the Z-direction is cutting direction, 

and the zero coordinates in the stock corner. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 Figure (5.29): Toolpath verification and G-code program for CRHS method die 

profile.  
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The shapes result from the Surfcam software is shown if Figure (5.30). 
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    Figure (5.30: a, b, and c): The semi finishing for the surfaces machined by Surfcam Software. 
  a- The semi finishing surface generated by CRHS method. 
  b- The semi finishing surface generated by Quartic Subdivision to Uniform B-spline technical. 
  c- The semi finishing surface generated by Quintic Subdivision to Uniform B-spline technical. 
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5.5 Cutting Conditions for Experimental part 

According to the conditions of the experimental work, the type of 

material that was used is Ureol (an Epoxy Resin) .The tool used in this 

work is tip ball mill cutter, tool material is (HSS) with Ø8 for CRHS 

method, Ø10 for Quartic Uniform  B-spline technical, and  Ø6 for Quintic 

Uniform B-spline technical, the machining was achieved on CNC machine 

(Hermle C30U dynamic, 5-axis AC-kinematics, with specification of linear 

motor drives (60.000 m/min), motor spindle 37kw 28.000 rpm) , the control 

is Siemens 840D,and the position error was below 0.002mm The machine 

is operated in Technical University Darmstadt (Germany) as shown in 

Figure (5.31), and the G-codes imported to this CNC machine was 

achieved by Surfcam software and modified by Matlab (V7.0) software. 

The G-code designed is 3-axis FANUC 15 MB system, and the machining 

process was done without Lubricant. 

   

 

 

 

 

 

 

 

 

 

 

 Figure (5.31): CNC machine (Hermle C30U dynamic, 5-axis AC-kinema
which belongs to Technical University Darmstadt (Germany) 
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The other cutting conditions are written in Table (5.3), and the surfaces 

samples results from machining process are shown in Figure (5.32) and 

Figure (5.33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure (5.32): The samples result from M chining process by CNC milling machine. 
a- Sample designed by CRHS method and machined with cutter radius R 4mm. 
b- Sample designed by Quintic Subdivision for Uniform B-spline technical and 
machined with cutter radius R 3mm. 
b- Sample designed by Quartic Subdivision for Uniform B-spline technical and 
machined with cutter radius R 5mm. 
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Figure (5.33): The samples result from Machining process by CNC milling machine. 
a- Sample designed by CRHS method and machined with cutter radius R 4mm. 
b- Sample designed by Quartic Subdivision for Uniform B-spline technical and 
machined with cutter radius R 5mm. 
c- Sample designed by Quintic Subdivision for Uniform B-spline technical and 
machined with cutter radius R 3mm. 
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CHAPTER SIX 
Conclusions and Suggestions for Future Work 

This chapter summarizes the results of the work done within the 

framework of the adopted subdivision technique with different subdivision 

iterations, and compares the result surfaces with the surface generated by 

CRHS method, described in this thesis. 

The surfaces are designed using Matlab (V7.0) software package, while 

the program used to make machining simulation and G-code programs are 

designed by using Surfcam software. These G-code programs are 

implemented  on a CNC machine (Hermle C30U dynamic, 5-axis AC-

kinematics, with specification of linear motor drives (60.000 m/min), motor 

spindle 37kw 28.000 rpm) , the control is Siemens 840D,and the position 

error was below 0.002mm this machine is operated in the Technical 

University Darmstadt (Germany). 

 6.1 Conclusions: 

1. The proposed technique of optimum cutter radius selection based on 

the minimum of cutter radius of curvature proves to be efficient 

enough in the prevention of cutter interference with the part 

geometric. 

2. The proposed graphical simulation is an important step in 

preprocessing to submit an assessing, for the correctness of the 

surface presented before applying real cutting process (by generating 

the G-code by Surfcam software and show up the final shape 

resulting from implementing the G-codes). 

3. Generation of G-code program could be achieved by uncomplicated 

method which is utilizing the capability of (PC) in saving the large 

data and processing facility .to allow machining of complicated parts 

that require multi processes that means a very large number of        

G-code block. 
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4. The toolpath could be obtained in two directions (U-direction and 

W-direction) for the roughing and semi finishing processes and the 

optimum toolpath (the optimum one is accompanied with the lower 

time milling process) can be chosen. 

5. The proposed subdivision algorithm that is developed (subdividing 

the cubic Uniform B-Spline curve to Quartic Uniform B-Spline 

curve after three iterations of subdivision and Quintic B-spline curve 

after four iterations of subdivision) is successful in representing the 

die profile which is designed by CRHS method, and the effect of the 

subdivision iteration is shown in choose the cutter radius, toolpath 

design, and the surface deviation in roughing and semi finishing 

processes. 

6. The CNC machine (Hermle C30U) with position error below 

0.002mm facilitated obtaining the accurate results when the samples 

were machined by this CNC machine. 

7. The sample shapes resulting from the experimental work by using 

CNC machine (Hermle C30U),was  superposed with the samples 

shapes resulting from Simulation which is done by using Surfcam 

software prove the accuracy work to design the G-code . 

8. The Matlab program which is invented to transfer the zero 

coordinate of the stocks on the stocks corner is successful, because 

the G-code result was run successful on this CNC machine, and the 

sample shapes results identify the samples shapes which result from 

simulation program. 

9. The difference in cutter radius, and the toolpath length (see table 5.3) 

was affects directly the surface roughing results (recognize by 

vision). 

10. The conversion of the file extension from Matlab file to DXF file 

was done successfully, that is because the commercial program 
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which is used to make simulation of our samples imports this DXF 

file extension successfully. 

11. In all the fields which use subdivision algorithms (like subdivision 

for the polygon, subdivision for the vertex boundary, or subdivision 

for mesh node of the surface),the main reason for using these 

algorithms is to increase the resolution (in image processing),and 

increase the surface smoothness, In this thesis the cutter radius result 

for the surface generated by Quintic Uniform B-spline surface is 

(3mm),and the cutter used for surface generated by CRHS method is 

(5mm).As widely known the cutter radius is the most important 

indicator of the smoothness of surfaces, and that means the resulting 

surface from the subdivision algorithm is smoother than the surface 

resulting from the CRHS method. 

6.2 Suggestions for Future Work: 

1. Using more Subdivision iterations in Uniform B-spline technique 

and making comparison with the surfaces (die profile) designed by 

using DCRHS, CRHS, and ACRHS method, with Zig-Zag toolpath 

type. 

2. Drawing the die profile by using Bezier, Non-Uniform B-spline 

technique, and comparison it with the die designed by using CRHS 

or CMSR method. 

3. Drawing the Die profile by approximation method with different 

machining types (Iso-parametric machining, Iso-scallop machining, 

and Iso-planar machining) and making comparing between the 

results. 

4. Studying the splitting matrix for Subdivision algorithm, and 

developing the way to find the splitting matrixes.  
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Appendix A 

Derivative of the Uniform B-Spline Basis Functions with k=5: 

The uniform B-spline basis function is determined by the general    

equation (A.1): 
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From the equation above it's easy to calculate (p (u)) for any piece of the 

curve with the enclosed period (i ≤ u < i+1) depending on the 

function , and from notified the equations above, we note that 

the function ( ) just in this period, and making summation of this 

functions in one equation will yield ( ): 

1(u)Ni,1 =

1N 4,1i =+

p(u)

].4)p4u(u

)u6u(9)u4u1)(4u)(u(3u)u1)(2(u

u)(3u)(11)2uu)(u(32)(u)u4u(4

2)(uu)1)(1(uu)2)(2(u)u2u(1

4)4u((u)u)pu4u(4u)(2u)1)(1(u

)u4u(4)u2u2)(1u)(u(2)u2u(1

u)3)(1((u))pu2u)(1u2u[((1
24
1(u)p

:formanother  in  written be couldit  and
.]p2)i(u

u)3(ipu)21)(iiu)(u3(i

i)pu)(u21)(iiu)(u3(iu)p1(i
1)iu)(u3(i2)pi(uu)22)(ii(u

u)p11)(ii(uu)22)(ii(upu)1(i

2)i[(u
24
1]i)puu)2(iu)p1(i

1)i(uu)2(ipu)12)(iiu)(u2(i

1ipu)13)(ii[(u
24
1pu)1(i

24
1p(u)

2i
2

22

22

2

2
1i

2

222

i
22

i

2i
2

2
2i

2
2i2i

2
2i

2
2i2i

2

2
1i

3
1i

2
1i

2

3
i

4

+

+

+

+

++

+

++

++

+

+−

+−++−+−+−+

−+−++−+++−

++−+−+++−

++++−−+−+

+−++−+−++−

−+++−+−=

+−

−++−++−−+

+−−++−−++−+
+−−+++−−++−

+−++−−++−+−+

+−+−−++−+

+−−++−++−−+

++−++−+−+=

 

… (A.8) 

....(A.9) 

where (0 ≤ u ≤ 1),  is the function for the curve [ , , ): is the 

control points. 
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Appendix B 

Subdividing the cubic B-spline surface 
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Each of these points can be classified into three categories-face point, edge 

point and vertex point –depending on each point relationship to the original 

control point mesh. The points 0,22,00,0 ,, ppp ′′′ and ,2,2p′ which are shown in the 

Figure (4.14). 
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  Rewrite the equation with these face point substituted on the right –hand 
side, and obtain 
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Simplifying these equations we obtain 
 

In examining these equation ,we see that the points 

and0,33,22,10,13,01,0 ,,,,, pppppp ′′′′′′ ,2,3p′ which are called "edge" points , are given 

as the average of four point –the two point that define the original edge and 

the two new face point of the face sharing the edge . This is shown in the 

following figure 
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 Side of the equation above, we obtain 
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The remaining four points, 1,33,11,1 ,, ppp ′′′  and ,3,3p′  as shown in the figure 
below 
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Appendix C 

The Mean curvature for Surface generated by CRHS Method  
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The Mean curvature for Surface generated by (Subdivision method) Quartic Uniform B-spline surface 
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The Mean curvature for Surface generated by (Subdivision method) Quantic Uniform B-spline surface  
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Appendix D 

The Radius of Curvature for Surface generated by CRHS Method: 
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The Radius of Curvature for Surface generated by (Subdivision method) Quartic Uniform B-spline surface 
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The Radius of Curvature for Surface generated by (Subdivision method) Quintic Uniform B-spline surface 
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Part program of the adopted technique 

CRHS method: 
N1 G17 G40 G80 G90  
N2 T7 M6  
N3 M3 S14000  
N4 G00 G54 X90. Y-10.  
N5 G43 Z67. H7  
N6 M8  
N7 G00 Z43.7206  
N8 G01 Z41.2206 F382.0  
N9 X90.0207 Y4.8906 F10000.0  
N10 X89.9527 Y6.5312  
N11 X90.0409 Y8.1406  
N12 X90.2206 Y9.7031  
N13 X88.964 Y10.7031  
N14 X86.013 Y12.1562  
N15 X84.6696 Y13.0469  
N16 X83.4401 Y14.1094  
N17 X82.2581 Y15.2188  
N18 X81.1381 Y16.4062  
N19 X80.135 Y17.7031  
N20 X79.2527 Y19.0625  
N21 X78.4669 Y20.5  
N22 X77.7944 Y21.9844  
N23 X77.2257 Y23.5  
N24 X76.7391 Y25.0625  
N25 X76.332 Y26.6406  
N26 X75.9919 Y28.2344  
N27 X75.4697 Y31.4531  
N28 X75.1037 Y34.6875  
N29 X74.9901 Y36.3125  
N30 X75.0003 Y42.8438  
N31 X74.8862  
N32 X74.876 Y36.3125  
N33 X74.9891 Y34.6875  
N34 X75.3537 Y31.4531  
N35 X75.874 Y28.2344  
N36 X76.2127 Y26.6406  
N37 X76.6183 Y25.0625  
N38 X77.103 Y23.5  
N39 X77.6696 Y21.9844  
N40 X78.3396 Y20.5  
N41 X79.1224 Y19.0625  
N42 X80.0013 Y17.7031  
N43 X81.0006 Y16.4062  
N44 X82.1164 Y15.2188  
N45 X83.2938 Y14.1094  
N46 X84.5186 Y13.0469  
N47 X85.857 Y12.1562  
N48 X88.7967 Y10.7031  
N49 X90.0485 Y9.7031  
N50 X89.8695 Y8.1406  
N51 X89.7816 Y6.5312  
N52 X89.8493 Y4.8906  
N53 X89.8288 Y0  
N54 X89.3163  
N55 X89.3367 Y4.8906  
N56 X89.2697 Y6.5312  
N57 X89.3566 Y8.1406  
N58 X89.5336 Y9.7031  
N59 X88.2961 Y10.7031  
N60 X85.39 Y12.1562  
N61 X84.0669 Y13.0469  
N62 X82.8561 Y14.1094  
N63 X81.6921 Y15.2188  
N64 X80.5891 Y16.4062  
N65 X79.6012 Y17.7031  
N66 X78.7323 Y19.0625  
N67 X77.9585 Y20.5  
N68 X77.2962 Y21.9844  
N69 X76.7361 Y23.5  
N70 X76.2569 Y25.0625  
N71 X75.856 Y26.6406  
N72 X75.5211 Y28.2344  
……………………………………… 
……………………………………… 
……………………………………… 
N4785 X19.6129 Y28.2344 Z13.7762  
N4786 X19.3344 Y26.6406 Z13.9713  
N4787 X19.0008 Y25.0625 Z14.2048  
N4788 X18.6023 Y23.5 Z14.4839  
N4789 X18.1364 Y21.9844 Z14.8101  
N4790 X17.5855 Y20.5 Z15.1958  
N4791 X16.9418 Y19.0625 Z15.6465  
N4792 X16.2191 Y17.7031 Z16.1526  
N4793 X15.3974 Y16.4062 Z16.728  
N4794 X14.4799 Y15.2188 Z17.3704  
N4795 X13.5117 Y14.1094 Z18.0483  
N4796 X12.5046 Y13.0469 Z18.7535  

N4797 X11.4041 Y12.1562 Z19.5241  
N4798 X8.9868 Y10.7031 Z21.2167  
N4799 X7.9574 Y9.7031 Z21.9375  
N4800 X8.1047 Y8.1406 Z21.8344  
N4801 X8.1769 Y6.5312 Z21.7838  
N4802 X8.1212 Y4.8906 Z21.8228  
N4803 X8.1382 Y0 Z21.8109  
N4804 X6.0289 Z18.5  
N4805 X6.011 Y4.8906 Z18.5103  
N4806 X6.0698 Y6.5312 Z18.4763  
N4807 X5.9934 Y8.1406 Z18.5204  
N4808 X5.8378 Y9.7031 Z18.6103  
N4809 X6.926 Y10.7031 Z17.982  
N4810 X9.4817 Y12.1562 Z16.5065  
N4811 X10.6451 Y13.0469 Z15.8348  
N4812 X11.7099 Y14.1094 Z15.22  
N4813 X12.7335 Y15.2188 Z14.6291  
N4814 X13.7034 Y16.4062 Z14.0691  
N4815 X14.5722 Y17.7031 Z13.5675  
N4816 X15.3363 Y19.0625 Z13.1264  
N4817 X16.0168 Y20.5 Z12.7335  
N4818 X16.5992 Y21.9844 Z12.3972  
N4819 X17.0918 Y23.5 Z12.1128  
N4820 X17.5131 Y25.0625 Z11.8696  
N4821 X17.8657 Y26.6406 Z11.666  
N4822 X18.1602 Y28.2344 Z11.496  
N4823 X18.6125 Y31.4531 Z11.2348  
N4824 X18.9294 Y34.6875 Z11.0518  
N4825 X19.0278 Y36.3125 Z10.9951  
N4826 X19.0189 Y42.8438 Z11.0002  
N4827 X17.8105 Z8.6787  
N4828 X17.8197 Y36.3125 Z8.6744  
N4829 X17.7168 Y34.6875 Z8.7224  
N4830 X17.3851 Y31.4531 Z8.877  
N4831 X16.9118 Y28.2344 Z9.0978  
N4832 X16.6036 Y26.6406 Z9.2415  
N4833 X16.2346 Y25.0625 Z9.4135  
N4834 X15.7936 Y23.5 Z9.6192  
N4835 X15.2782 Y21.9844 Z9.8595  
N4836 X14.6687 Y20.5 Z10.1437  
N4837 X13.9565 Y19.0625 Z10.4758  
N4838 X13.1569 Y17.7031 Z10.8487  
N4839 X12.2477 Y16.4062 Z11.2726  
N4840 X11.2327 Y15.2188 Z11.746  
N4841 X10.1614 Y14.1094 Z12.2455  
N4842 X9.0471 Y13.0469 Z12.7651  
N4843 X7.8296 Y12.1562 Z13.3329  
N4844 X5.1551 Y10.7031 Z14.58  
N4845 X4.0162 Y9.7031 Z15.1111  
N4846 X4.1791 Y8.1406 Z15.0351  
N4847 X4.259 Y6.5312 Z14.9978  
N4848 X4.1974 Y4.8906 Z15.0266  
N4849 X4.2161 Y0 Z15.0178  
N4850 X2.7138 Z11.3909  
N4851 X2.6944 Y4.8906 Z11.398  
N4852 X2.7583 Y6.5312 Z11.3747  
N4853 X2.6754 Y8.1406 Z11.4049  
N4854 X2.5065 Y9.7031 Z11.4664  
N4855 X3.6873 Y10.7031 Z11.0366  
N4856 X6.4603 Y12.1562 Z10.0273  
N4857 X7.7228 Y13.0469 Z9.5678  
N4858 X8.8781 Y14.1094 Z9.1473  
N4859 X9.9888 Y15.2188 Z8.743  
N4860 X11.0413 Y16.4062 Z8.36  
N4861 X11.9839 Y17.7031 Z8.0169  
N4862 X12.813 Y19.0625 Z7.7151  
N4863 X13.5514 Y20.5 Z7.4464  
N4864 X14.1833 Y21.9844 Z7.2164  
N4865 X14.7178 Y23.5 Z7.0218  
N4866 X15.175 Y25.0625 Z6.8554  
N4867 X15.5576 Y26.6406 Z6.7162  
N4868 X15.8771 Y28.2344 Z6.5999  
N4869 X16.3679 Y31.4531 Z6.4212  
N4870 X16.7118 Y34.6875 Z6.2961  
N4871 X16.8185 Y36.3125 Z6.2572  
N4872 X16.8089 Y42.8438 Z6.2607  
N4873 X16.0219 Z3.7647  
N4874 X16.0318 Y36.3125 Z3.762  
N4875 X15.9221 Y34.6875 Z3.7914  
N4876 X15.5685 Y31.4531 Z3.8861  
N4877 X15.0641 Y28.2344 Z4.0213  
N4878 X14.7356 Y26.6406 Z4.1093  
N4879 X14.3424 Y25.0625 Z4.2147  
N4880 X13.8724 Y23.5 Z4.3406  
N4881 X13.323 Y21.9844 Z4.4878  
N4882 X12.6734 Y20.5 Z4.6619  
N4883 X11.9144 Y19.0625 Z4.8653  

N4884 X11.0622 Y17.7031 Z5.0936  
N4885 X10.0932 Y16.4062 Z5.3532  
N4886 X9.0114 Y15.2188 Z5.6431  
N4887 X7.8697 Y14.1094 Z5.949  
N4888 X6.6821 Y13.0469 Z6.2672  
N4889 X5.3844 Y12.1562 Z6.615  
N4890 X2.534 Y10.7031 Z7.3787  
N4891 X1.3202 Y9.7031 Z7.704  
N4892 X1.4938 Y8.1406 Z7.6574  
N4893 X1.5791 Y6.5312 Z7.6346  
N4894 X1.5134 Y4.8906 Z7.6522  
N4895 X1.5333 Y0 Z7.6469  
N4896 X0.6837 Z3.8142  
N4897 X0.6633 Y4.8906 Z3.8178  
N4898 X0.7303 Y6.5312 Z3.8059  
N4899 X0.6434 Y8.1406 Z3.8213  
N4900 X0.4664 Y9.7031 Z3.8525  
N4901 X1.7039 Y10.7031 Z3.6343  
N4902 X4.61 Y12.1562 Z3.1218  
N4903 X5.9331 Y13.0469 Z2.8886  
N4904 X7.1439 Y14.1094 Z2.6751  
N4905 X8.3079 Y15.2188 Z2.4698  
N4906 X9.4109 Y16.4062 Z2.2753  
N4907 X10.3988 Y17.7031 Z2.1011  
N4908 X11.2677 Y19.0625 Z1.9479  
N4909 X12.0415 Y20.5 Z1.8115  
N4910 X12.7038 Y21.9844 Z1.6947  
N4911 X13.2639 Y23.5 Z1.5959  
N4912 X13.7431 Y25.0625 Z1.5114  
N4913 X14.144 Y26.6406 Z1.4407  
N4914 X14.4789 Y28.2344 Z1.3817  
N4915 X14.9932 Y31.4531 Z1.291  
N4916 X15.3537 Y34.6875 Z1.2275  
N4917 X15.4655 Y36.3125 Z1.2077  
N4918 X15.4554 Y42.8438 Z1.2095  
N4919 X15.1138 Z-1.3853  
N4920 X15.124 Y36.3125 Z-1.3862  
N4921 X15.0109 Y34.6875 Z-1.3763  
N4922 X14.6463 Y31.4531 Z-1.3444  
N4923 X14.126 Y28.2344 Z-1.2989  
N4924 X13.7873 Y26.6406 Z-1.2692  
N4925 X13.3817 Y25.0625 Z-1.2338  
N4926 X12.897 Y23.5 Z-1.1913  
N4927 X12.3304 Y21.9844 Z-1.1418  
N4928 X11.6604 Y20.5 Z-1.0832  
N4929 X10.8776 Y19.0625 Z-1.0147  
N4930 X9.9987 Y17.7031 Z-0.9378  
N4931 X8.9994 Y16.4062 Z-0.8504  
N4932 X7.8836 Y15.2188 Z-0.7527  
N4933 X6.7062 Y14.1094 Z-0.6497  
N4934 X5.4814 Y13.0469 Z-0.5426  
N4935 X4.143 Y12.1562 Z-0.4255  
N4936 X1.2033 Y10.7031 Z-0.1683  
N4937 X-0.0485 Y9.7031 Z-0.0588  
N4938 X0.1305 Y8.1406 Z-0.0744  
N4939 X0.2184 Y6.5312 Z-0.0821  
N4940 X0.1507 Y4.8906 Z-0.0762  
N4941 X0.1712 Y0 Z-0.078  
N4942 X0 Z-4.  
N4943 X-0.0207 Y4.8906  
N4944 X0.0473 Y6.5312  
N4945 X-0.0409 Y8.1406  
N4946 X-0.2206 Y9.7031  
N4947 X1.036 Y10.7031  
N4948 X3.987 Y12.1562  
N4949 X5.3304 Y13.0469  
N4950 X6.5599 Y14.1094  
N4951 X7.7419 Y15.2188  
N4952 X8.8619 Y16.4062  
N4953 X9.865 Y17.7031  
N4954 X10.7473 Y19.0625  
N4955 X11.5331 Y20.5  
N4956 X12.2056 Y21.9844  
N4957 X12.7743 Y23.5  
N4958 X13.2609 Y25.0625  
N4959 X13.668 Y26.6406  
N4960 X14.0081 Y28.2344  
N4961 X14.5303 Y31.4531  
N4962 X14.8963 Y34.6875  
N4963 X15.0099 Y36.3125  
N4964 X14.9997 Y42.8438  
N4965 G00 Z43.7206  
N4966 M9  
N4967 G90 G00 G49 Z0 M5  
N4968 X0 Y0  
N4969 M30  
N4970 % 

 



Appendix E 156
Part program of the adopted (Subdivision algorithm) 

Quartic Uniform B-spline technique: 
N1 G17 G40 G80 G90  
N2 T8 M6  
N3 M3 S14000  
N4 G00 G54 X90. Y-10 . 
N5 G43 Z66. H8  
N6 M8  
N7 G00 Z42.764  
N8 G01 Z40.264 F324.7  
N9 X90.0128 Y4.2118 F10000.0  
N10 X89.941 Y6.2977  
N11 X90.264 Y8.169  
N12 X90.2599 Y9.7494  
N13 X88.6689 Y11.115  
N14 X81.9677 Y16.1909  
N15 X80.3208 Y17.5535  
N16 X78.8341 Y19.0175  
N17 X77.6446 Y20.7304  
N18 X76.9275 Y22.668  
N19 X76.4142 Y24.7055  
N20 X76.0002 Y26.7743  
N21 X75.6844 Y28.8578  
N22 X75.0799 Y35.1018  
N23 X74.9652 Y37.1973  
N24 X75.0069 Y39.2953  
N25 X75.0005 Y43.4974  
N26 X74.8119  
N27 X74.8182 Y39.2953  
N28 X74.7768 Y37.1973  
N29 X74.8908 Y35.1018  
N30 X75.4915 Y28.8578  
N31 X75.8053 Y26.7743  
N32 X76.2167 Y24.7055  
N33 X76.7268 Y22.668  
N34 X77.4393 Y20.7304  
N35 X78.6213 Y19.0175  
N36 X80.0987 Y17.5535  
N37 X81.7353 Y16.1909  
N38 X88.3943 Y11.115  
N39 X89.9754 Y9.7494  
N40 X89.9794 Y8.169  
N41 X89.6584 Y6.2977  
N42 X89.7298 Y4.2118  
N43 X89.717 Y0  
N44 X88.8718  
N45 X88.8842 Y4.2118  
N46 X88.8142 Y6.2977  
N47 X89.1292 Y8.169  
N48 X89.1252 Y9.7494  
N49 X87.574 Y11.115  
N50 X81.0409 Y16.1909  
N51 X79.4352 Y17.5535  
N52 X77.9858 Y19.0175  
N53 X76.8261 Y20.7304  
N54 X76.127 Y22.668  
N55 X75.6266 Y24.7055  
N56 X75.223 Y26.7743  
N57 X74.9151 Y28.8578  
N58 X74.3257 Y35.1018  
N59 X74.2139 Y37.1973  
N60 X74.2546 Y39.2953  
N61 X74.2484 Y43.4974  
N62 X73.317  
N63 X73.323 Y39.2953  
N64 X73.2836 Y37.1973  
N65 X73.3919 Y35.1018  
N66 X73.9625 Y28.8578  
N67 X74.2606 Y26.7743  
N68 X74.6514 Y24.7055  
N69 X75.1359 Y22.668  
N70 X75.8127 Y20.7304  
N71 X76.9354 Y19.0175  
N72 X78.3387 Y17.5535  
…………………………………….. 
…………………………………….. 
……………………………………. 
N3019 X29.0387 Z20.4022  
N3020 X29.0354 Y39.2953 Z20.4076  
N3021 X29.0576 Y37.1973 Z20.3722  
N3022 X28.9965 Y35.1018 Z20.4694  
N3023 X28.6749 Y28.8578 Z20.9812  
N3024 X28.5069 Y26.7743 Z21.2486  
N3025 X28.2866 Y24.7055 Z21.5992  
N3026 X28.0135 Y22.668 Z22.0338  
N3027 X27.632 Y20.7304 Z22.641  
N3028 X26.9992 Y19.0175 Z23.6481  
N3029 X26.2082 Y17.5535 Z24.907  
N3030 X25.332 Y16.1909 Z26.3015  

N3031 X21.7668 Y11.115 Z31.9755  
N3032 X20.9203 Y9.7494 Z33.3227  
N3033 X20.9181 Y8.169 Z33.3262  
N3034 X21.09 Y6.2977 Z33.0526  
N3035 X21.0518 Y4.2118 Z33.1134  
N3036 X21.0586 Y0 Z33.1026  
N3037 X16.943 Z30.1824  
N3038 X16.935 Y4.2118 Z30.1924  
N3039 X16.9798 Y6.2977 Z30.1363  
N3040 X16.7783 Y8.169 Z30.3888  
N3041 X16.7809 Y9.7494 Z30.3856  
N3042 X17.7729 Y11.115 Z29.1417  
N3043 X21.951 Y16.1909 Z23.9025  
N3044 X22.9779 Y17.5535 Z22.6149  
N3045 X23.9048 Y19.0175 Z21.4525  
N3046 X24.6464 Y20.7304 Z20.5226  
N3047 X25.0935 Y22.668 Z19.9619  
N3048 X25.4135 Y24.7055 Z19.5606  
N3049 X25.6717 Y26.7743 Z19.2369  
N3050 X25.8686 Y28.8578 Z18.99  
N3051 X26.2455 Y35.1018 Z18.5174  
N3052 X26.317 Y37.1973 Z18.4277  
N3053 X26.291 Y39.2953 Z18.4603  
N3054 X26.295 Y43.4974 Z18.4554  
N3055 X23.7864 Z16.2136  
N3056 X23.7819 Y39.2953 Z16.2181  
N3057 X23.8114 Y37.1973 Z16.1886  
N3058 X23.7303 Y35.1018 Z16.2697  
N3059 X23.3028 Y28.8578 Z16.6972  
N3060 X23.0795 Y26.7743 Z16.9205  
N3061 X22.7868 Y24.7055 Z17.2132  
N3062 X22.4238 Y22.668 Z17.5762  
N3063 X21.9168 Y20.7304 Z18.0832  
N3064 X21.0757 Y19.0175 Z18.9243  
N3065 X20.0244 Y17.5535 Z19.9756  
N3066 X18.8599 Y16.1909 Z21.1401  
N3067 X14.1214 Y11.115 Z25.8786  
N3068 X12.9964 Y9.7494 Z27.0036  
N3069 X12.9935 Y8.169 Z27.0065  
N3070 X13.2219 Y6.2977 Z26.7781  
N3071 X13.1711 Y4.2118 Z26.8289  
N3072 X13.1802 Y0 Z26.8198  
N3073 X9.8176 Z23.057  
N3074 X9.8076 Y4.2118 Z23.065  
N3075 X9.8637 Y6.2977 Z23.0202  
N3076 X9.6112 Y8.169 Z23.2217  
N3077 X9.6144 Y9.7494 Z23.2191  
N3078 X10.8583 Y11.115 Z22.2271  
N3079 X16.0975 Y16.1909 Z18.049  
N3080 X17.3851 Y17.5535 Z17.0221  
N3081 X18.5475 Y19.0175 Z16.0952  
N3082 X19.4774 Y20.7304 Z15.3536  
N3083 X20.0381 Y22.668 Z14.9065  
N3084 X20.4394 Y24.7055 Z14.5865  
N3085 X20.7631 Y26.7743 Z14.3283  
N3086 X21.01 Y28.8578 Z14.1314  
N3087 X21.4826 Y35.1018 Z13.7545  
N3088 X21.5723 Y37.1973 Z13.683  
N3089 X21.5397 Y39.2953 Z13.709  
N3090 X21.5446 Y43.4974 Z13.705  
N3091 X19.5978 Z10.9613  
N3092 X19.5924 Y39.2953 Z10.9646  
N3093 X19.6278 Y37.1973 Z10.9424  
N3094 X19.5306 Y35.1018 Z11.0035  
N3095 X19.0188 Y28.8578 Z11.3251  
N3096 X18.7514 Y26.7743 Z11.4931  
N3097 X18.4008 Y24.7055 Z11.7134  
N3098 X17.9662 Y22.668 Z11.9865  
N3099 X17.359 Y20.7304 Z12.368  
N3100 X16.3519 Y19.0175 Z13.0008  
N3101 X15.093 Y17.5535 Z13.7918  
N3102 X13.6985 Y16.1909 Z14.668  
N3103 X8.0245 Y11.115 Z18.2332  
N3104 X6.6773 Y9.7494 Z19.0797  
N3105 X6.6738 Y8.169 Z19.0819  
N3106 X6.9474 Y6.2977 Z18.91  
N3107 X6.8866 Y4.2118 Z18.9482  
N3108 X6.8974 Y0 Z18.9414  
N3109 X4.4564 Z14.5248  
N3110 X4.4449 Y4.2118 Z14.5303  
N3111 X4.5096 Y6.2977 Z14.4992  
N3112 X4.2185 Y8.169 Z14.6393  
N3113 X4.2222 Y9.7494 Z14.6376  
N3114 X5.6557 Y11.115 Z13.9472  
N3115 X11.6932 Y16.1909 Z11.0397  
N3116 X13.1771 Y17.5535 Z10.3251  
N3117 X14.5166 Y19.0175 Z9.68  

N3118 X15.5882 Y20.7304 Z9.164  
N3119 X16.2343 Y22.668 Z8.8528  
N3120 X16.6968 Y24.7055 Z8.6301  
N3121 X17.0698 Y26.7743 Z8.4505  
N3122 X17.3543 Y28.8578 Z8.3135  
N3123 X17.8989 Y35.1018 Z8.0512  
N3124 X18.0023 Y37.1973 Z8.0014  
N3125 X17.9647 Y39.2953 Z8.0195  
N3126 X17.9704 Y43.4974 Z8.0167  
N3127 X16.683 Z4.9086  
N3128 X16.677 Y39.2953 Z4.9106  
N3129 X16.7164 Y37.1973 Z4.8969  
N3130 X16.6081 Y35.1018 Z4.9348  
N3131 X16.0375 Y28.8578 Z5.1344  
N3132 X15.7394 Y26.7743 Z5.2387  
N3133 X15.3486 Y24.7055 Z5.3755  
N3134 X14.8641 Y22.668 Z5.545  
N3135 X14.1873 Y20.7304 Z5.7818  
N3136 X13.0646 Y19.0175 Z6.1747  
N3137 X11.6613 Y17.5535 Z6.6657  
N3138 X10.1068 Y16.1909 Z7.2097  
N3139 X3.7817 Y11.115 Z9.4229  
N3140 X2.2799 Y9.7494 Z9.9484  
N3141 X2.276 Y8.169 Z9.9498  
N3142 X2.581 Y6.2977 Z9.8431  
N3143 X2.5132 Y4.2118 Z9.8668  
N3144 X2.5252 Y0 Z9.8626  
N3145 X1.1282 Z5.0134  
N3146 X1.1158 Y4.2118 Z5.0163  
N3147 X1.1858 Y6.2977 Z5.0003  
N3148 X0.8708 Y8.169 Z5.0722  
N3149 X0.8748 Y9.7494 Z5.0713  
N3150 X2.426 Y11.115 Z4.7172  
N3151 X8.9591 Y16.1909 Z3.2261  
N3152 X10.5648 Y17.5535 Z2.8596  
N3153 X12.0142 Y19.0175 Z2.5288  
N3154 X13.1739 Y20.7304 Z2.2641  
N3155 X13.873 Y22.668 Z2.1045  
N3156 X14.3734 Y24.7055 Z1.9903  
N3157 X14.777 Y26.7743 Z1.8982  
N3158 X15.0849 Y28.8578 Z1.8279  
N3159 X15.6743 Y35.1018 Z1.6934  
N3160 X15.7861 Y37.1973 Z1.6679  
N3161 X15.7454 Y39.2953 Z1.6772  
N3162 X15.7516 Y43.4974 Z1.6757  
N3163 X15.1881 Z-1.641  
N3164 X15.1818 Y39.2953 Z-1.6403  
N3165 X15.2232 Y37.1973 Z-1.645  
N3166 X15.1092 Y35.1018 Z-1.6321  
N3167 X14.5085 Y28.8578 Z-1.5644  
N3168 X14.1947 Y26.7743 Z-1.5291  
N3169 X13.7833 Y24.7055 Z-1.4827  
N3170 X13.2732 Y22.668 Z-1.4253  
N3171 X12.5607 Y20.7304 Z-1.345  
N3172 X11.3787 Y19.0175 Z-1.2118  
N3173 X9.9013 Y17.5535 Z-1.0453  
N3174 X8.2647 Y16.1909 Z-0.8609  
N3175 X1.6057 Y11.115 Z-0.1106  
N3176 X0.0246 Y9.7494 Z0.0675  
N3177 X0.0206 Y8.169 Z0.068  
N3178 X0.3416 Y6.2977 Z0.0318  
N3179 X0.2702 Y4.2118 Z0.0398  
N3180 X0.283 Y0 Z0.0384  
N3181 X0 Z-5 . 
N3182 X-0.0128 Y4.2118  
N3183 X0.059 Y6.2977  
N3184 X-0.264 Y8.169  
N3185 X-0.2599 Y9.7494  
N3186 X1.3311 Y11.115  
N3187 X8.0323 Y16.1909  
N3188 X9.6792 Y17.5535  
N3189 X11.1659 Y19.0175  
N3190 X12.3554 Y20.7304  
N3191 X13.0725 Y22.668  
N3192 X13.5858 Y24.7055  
N3193 X13.9998 Y26.7743  
N3194 X14.3156 Y28.8578  
N3195 X14.9201 Y35.1018  
N3196 X15.0348 Y37.1973  
N3197 X14.9931 Y39.2953  
N3198 X14.9995 Y43.4974  
N3199 G00 Z42.764  
N3200 M9  
N3201 G90 G00 G49 Z0 M5  
N3202 X0 Y0  
N3203 M30  
N3204% 



Appendix E 157
Part program of the adopted (Subdivision algorithm) 

Quintic Uniform B-spline technique: 
N1 G17 G40 G80 G90  
N2 T6 M6  
N3 M3 S18000  
N4 G00 G54 X90. Y-10.  
N5 G43 Z68. H6  
N6 M8  
N7 G00 Z44.8595  
N8 G01 Z42.3595 F143.2  
N9 X90.007 Y5.9216 F10000.0  
N10 X89.8818 Y7.3961  
N11 X90.3595 Y8.7803  
N12 X89.9118 Y10.0666  
N13 X88.6244 Y10.7569  
N14 X85.8721 Y11.9494  
N15 X84.5872 Y12.6131  
N16 X83.3761 Y13.4794  
N17 X82.338 Y14.5491  
N18 X81.4732 Y15.7126  
N19 X80.6452 Y16.9854  
N20 X79.8961 Y18.2515  
N21 X79.2059 Y19.5302  
N22 X78.5456 Y20.8836  
N23 X77.9587 Y22.2375  
N24 X76.9398 Y25.0183  
N25 X75.6179 Y29.2512  
N26 X75.2323 Y30.6596  
N27 X74.9888 Y32.1135  
N28 X74.9362 Y33.5976  
N29 X75.0166 Y38.04  
N30 X75.0001 Y43.9498  
N31 X74.9076  
N32 X74.918 Y36.5818  
N33 X74.8439 Y33.5976  
N34 X74.8964 Y32.1135  
N35 X75.1391 Y30.6596  
N36 X75.9545 Y27.8362  
N37 X76.8413 Y25.0183  
N38 X77.8571 Y22.2375  
N39 X78.4422 Y20.8836  
N40 X79.1004 Y19.5302  
N41 X79.7885 Y18.2515  
N42 X80.5354 Y16.9854  
N43 X81.3608 Y15.7126  
N44 X82.2229 Y14.5491  
N45 X83.2578 Y13.4794  
N46 X84.4652 Y12.6131  
N47 X85.7461 Y11.9494  
N48 X88.4899 Y10.7569  
N49 X89.7733 Y10.0666  
N50 X90.2197 Y8.7803  
N51 X89.7434 Y7.3961  
N52 X89.8683 Y5.9216  
N53 X89.8613 Y0  
N54 X89.446  
N55 X89.4529 Y5.9216  
N56 X89.3292 Y7.3961  
N57 X89.8011 Y8.7803  
N58 X89.3588 Y10.0666  
N59 X88.0873 Y10.7569  
N60 X85.3689 Y11.9494  
N61 X84.0998 Y12.6131  
N62 X82.9036 Y13.4794  
N63 X81.8783 Y14.5491  
N64 X81.0242 Y15.7126  
N65 X80.2064 Y16.9854  
N66 X79.4664 Y18.2515  
N67 X78.7847 Y19.5302  
N68 X78.1326 Y20.8836  
N69 X77.553 Y22.2375  
N70 X76.5466 Y25.0183  
N71 X75.241 Y29.2512  
N72 X74.8601 Y30.6596  
………………………………………. 
………………………………………. 
………………………………………. 
N5274 X19.2228 Y30.6596 Z12.7963  
N5275 X18.5254 Y27.8362 Z13.2237  
N5276 X17.7668 Y25.0183 Z13.6885  
N5277 X16.8981 Y22.2375 Z14.2209  
N5278 X16.3976 Y20.8836 Z14.5275  
N5279 X15.8347 Y19.5302 Z14.8725  
N5280 X15.2462 Y18.2515 Z15.2331  
N5281 X14.6074 Y16.9854 Z15.6246  
N5282 X13.9015 Y15.7126 Z16.0572  
N5283 X13.1641 Y14.5491 Z16.5091  
N5284 X12.279 Y13.4794 Z17.0514  
N5285 X11.2464 Y12.6131 Z17.6843  

N5286 X10.1508 Y11.9494 Z18.3556  
N5287 X7.8041 Y10.7569 Z19.7937  
N5288 X6.7064 Y10.0666 Z20.4663  
N5289 X6.3246 Y8.7803 Z20.7003  
N5290 X6.732 Y7.3961 Z20.4507  
N5291 X6.6252 Y5.9216 Z20.5161  
N5292 X6.6312 Y0 Z20.5124  
N5293 X4.9047 Z17.4296  
N5294 X4.8985 Y5.9216 Z17.4328  
N5295 X5.01 Y7.3961 Z17.3759  
N5296 X4.5844 Y8.7803 Z17.5928  
N5297 X4.9833 Y10.0666 Z17.3895  
N5298 X6.1304 Y10.7569 Z16.805  
N5299 X8.5827 Y11.9494 Z15.5555  
N5300 X9.7275 Y12.6131 Z14.9722  
N5301 X10.8067 Y13.4794 Z14.4224  
N5302 X11.7316 Y14.5491 Z13.9511  
N5303 X12.5021 Y15.7126 Z13.5585  
N5304 X13.2399 Y16.9854 Z13.1826  
N5305 X13.9074 Y18.2515 Z12.8425  
N5306 X14.5223 Y19.5302 Z12.5291  
N5307 X15.1106 Y20.8836 Z12.2294  
N5308 X15.6336 Y22.2375 Z11.9629  
N5309 X16.5414 Y25.0183 Z11.5004  
N5310 X17.7192 Y29.2512 Z10.9002  
N5311 X18.0629 Y30.6596 Z10.7252  
N5312 X18.2798 Y32.1135 Z10.6146  
N5313 X18.3266 Y33.5976 Z10.5908  
N5314 X18.255 Y38.04 Z10.6273  
N5315 X18.2697 Y43.9498 Z10.6198  
N5316 X17.2835 Z8.4805  
N5317 X17.2739 Y36.5818 Z8.4845  
N5318 X17.3425 Y33.5976 Z8.4561  
N5319 X17.294 Y32.1135 Z8.4762  
N5320 X17.069 Y30.6596 Z8.5694  
N5321 X16.3134 Y27.8362 Z8.8824  
N5322 X15.4915 Y25.0183 Z9.2228  
N5323 X14.5501 Y22.2375 Z9.6128  
N5324 X14.0079 Y20.8836 Z9.8374  
N5325 X13.3979 Y19.5302 Z10.09  
N5326 X12.7602 Y18.2515 Z10.3541  
N5327 X12.0681 Y16.9854 Z10.6408  
N5328 X11.3032 Y15.7126 Z10.9577  
N5329 X10.5042 Y14.5491 Z11.2886  
N5330 X9.5452 Y13.4794 Z11.6859  
N5331 X8.4262 Y12.6131 Z12.1494  
N5332 X7.2391 Y11.9494 Z12.6411  
N5333 X4.6963 Y10.7569 Z13.6943  
N5334 X3.5069 Y10.0666 Z14.187  
N5335 X3.0933 Y8.7803 Z14.3583  
N5336 X3.5346 Y7.3961 Z14.1755  
N5337 X3.4189 Y5.9216 Z14.2234  
N5338 X3.4254 Y0 Z14.2208  
N5339 X2.2025 Z10.9058  
N5340 X2.1958 Y5.9216 Z10.9079  
N5341 X2.3149 Y7.3961 Z10.8692  
N5342 X1.8605 Y8.7803 Z11.0169  
N5343 X2.2864 Y10.0666 Z10.8785  
N5344 X3.5108 Y10.7569 Z10.4807  
N5345 X6.1283 Y11.9494 Z9.6302  
N5346 X7.3503 Y12.6131 Z9.2331  
N5347 X8.5022 Y13.4794 Z8.8589  
N5348 X9.4894 Y14.5491 Z8.5381  
N5349 X10.3119 Y15.7126 Z8.2708  
N5350 X11.0994 Y16.9854 Z8.015  
N5351 X11.8119 Y18.2515 Z7.7835  
N5352 X12.4683 Y19.5302 Z7.5702  
N5353 X13.0962 Y20.8836 Z7.3662  
N5354 X13.6544 Y22.2375 Z7.1848  
N5355 X14.6234 Y25.0183 Z6.8699  
N5356 X15.8806 Y29.2512 Z6.4615  
N5357 X16.2474 Y30.6596 Z6.3423  
N5358 X16.4789 Y32.1135 Z6.2671  
N5359 X16.529 Y33.5976 Z6.2508  
N5360 X16.4525 Y38.04 Z6.2756  
N5361 X16.4682 Y43.9498 Z6.2705  
N5362 X15.8288 Z4.0034  
N5363 X15.8186 Y36.5818 Z4.0058  
N5364 X15.8909 Y33.5976 Z3.9885  
N5365 X15.8398 Y32.1135 Z4.0007  
N5366 X15.6031 Y30.6596 Z4.0576  
N5367 X14.8078 Y27.8362 Z4.2485  
N5368 X13.9427 Y25.0183 Z4.4562  
N5369 X12.9519 Y22.2375 Z4.6941  
N5370 X12.3812 Y20.8836 Z4.8311  
N5371 X11.7392 Y19.5302 Z4.9852  
N5372 X11.0681 Y18.2515 Z5.1463  

N5373 X10.3396 Y16.9854 Z5.3212  
N5374 X9.5346 Y15.7126 Z5.5145  
N5375 X8.6936 Y14.5491 Z5.7164  
N5376 X7.6843 Y13.4794 Z5.9587  
N5377 X6.5066 Y12.6131 Z6.2415  
N5378 X5.2572 Y11.9494 Z6.5414  
N5379 X2.581 Y10.7569 Z7.1839  
N5380 X1.3291 Y10.0666 Z7.4844  
N5381 X0.8938 Y8.7803 Z7.589  
N5382 X1.3583 Y7.3961 Z7.4774  
N5383 X1.2365 Y5.9216 Z7.5067  
N5384 X1.2434 Y0 Z7.505  
N5385 X0.554 Z4.0396  
N5386 X0.5471 Y5.9216 Z4.0406  
N5387 X0.6708 Y7.3961 Z4.0211  
N5388 X0.1989 Y8.7803 Z4.0958  
N5389 X0.6412 Y10.0666 Z4.0257  
N5390 X1.9127 Y10.7569 Z3.8244  
N5391 X4.6311 Y11.9494 Z3.3938  
N5392 X5.9002 Y12.6131 Z3.1928  
N5393 X7.0964 Y13.4794 Z3.0033  
N5394 X8.1217 Y14.5491 Z2.841  
N5395 X8.9758 Y15.7126 Z2.7057  
N5396 X9.7936 Y16.9854 Z2.5761  
N5397 X10.5336 Y18.2515 Z2.4589  
N5398 X11.2153 Y19.5302 Z2.351  
N5399 X11.8674 Y20.8836 Z2.2477  
N5400 X12.447 Y22.2375 Z2.1559  
N5401 X13.4534 Y25.0183 Z1.9965  
N5402 X14.759 Y29.2512 Z1.7897  
N5403 X15.1399 Y30.6596 Z1.7294  
N5404 X15.3804 Y32.1135 Z1.6913  
N5405 X15.4323 Y33.5976 Z1.6831  
N5406 X15.353 Y38.04 Z1.6956  
N5407 X15.3693 Y43.9498 Z1.693  
N5408 X15.0924 Z-0.6462  
N5409 X15.082 Y36.5818 Z-0.6454  
N5410 X15.1561 Y33.5976 Z-0.6512  
N5411 X15.1036 Y32.1135 Z-0.6471  
N5412 X14.8609 Y30.6596 Z-0.628  
N5413 X14.0455 Y27.8362 Z-0.5638  
N5414 X13.1587 Y25.0183 Z-0.494  
N5415 X12.1429 Y22.2375 Z-0.4141  
N5416 X11.5578 Y20.8836 Z-0.368  
N5417 X10.8996 Y19.5302 Z-0.3162  
N5418 X10.2115 Y18.2515 Z-0.2621  
N5419 X9.4646 Y16.9854 Z-0.2033  
N5420 X8.6392 Y15.7126 Z-0.1383  
N5421 X7.7771 Y14.5491 Z-0.0705  
N5422 X6.7422 Y13.4794 Z0.011  
N5423 X5.5348 Y12.6131 Z0.106  
N5424 X4.2539 Y11.9494 Z0.2068  
N5425 X1.5101 Y10.7569 Z0.4227  
N5426 X0.2267 Y10.0666 Z0.5237  
N5427 X-0.2197 Y8.7803 Z0.5589  
N5428 X0.2566 Y7.3961 Z0.5214  
N5429 X0.1317 Y5.9216 Z0.5312  
N5430 X0.1387 Y0 Z0.5307  
N5431 X0 Z-3.  
N5432 X-0.007 Y5.9216  
N5433 X0.1182 Y7.3961  
N5434 X-0.3595 Y8.7803  
N5435 X0.0882 Y10.0666  
N5436 X1.3756 Y10.7569  
N5437 X4.1279 Y11.9494  
N5438 X5.4128 Y12.6131  
N5439 X6.6239 Y13.4794  
N5440 X7.662 Y14.5491  
N5441 X8.5268 Y15.7126  
N5442 X9.3548 Y16.9854  
N5443 X10.1039 Y18.2515  
N5444 X10.7941 Y19.5302  
N5445 X11.4544 Y20.8836  
N5446 X12.0413 Y22.2375  
N5447 X13.0602 Y25.0183  
N5448 X14.3821 Y29.2512  
N5449 X14.7677 Y30.6596  
N5450 X15.0112 Y32.1135  
N5451 X15.0638 Y33.5976  
N5452 X14.9834 Y38.04  
N5453 X14.9999 Y43.9498  
N5454 G00 Z44.8595  
N5455 M9  
N5456 G90 G00 G49 Z0 M5  
N5457 X0 Y0  
N5458 M30  
N5459 % 



 

  الخلاصة
  

             ,)CAM/CAD( بمѧѧѧѧساعدة الحاسѧѧѧѧوب   والتѧѧѧѧصنيع ترآѧѧѧѧّز هѧѧѧѧذه الإطروحѧѧѧѧة علѧѧѧѧى التѧѧѧѧصميم  

مفهѧوم ثبѧات   ,المفهوم النظري المعتمѧد فѧي تѧصميم القوالѧب     ، و التقسيم الى اجزاء صغيرة   وارزميةخو

  .)CRHS(نسب الانفعال المتجانس

ولتѧشغيل شѧكل   .  فѧي الهندسѧة الميكانيكيѧة    الأهمية المرآزيѧة تكوين ثوابت السطوح الناعمة لها إنّ

  .ذلك الشكللمتوافق  وصف حاسوب باستعمال الحاسوب فانه يجب انتاج

 Quartic( بتقنيѧѧات التقريѧѧب  ت ولѧѧّدسѧѧطوح وCRHSسѧѧطح ولѧѧّد بطريقѧѧة   مقارنѧѧة بѧѧين تمѧѧت 

Uniform B-spline technique and Quantic Uniform B-spline technique(.  

آمѧѧا ان ).CNC( هѧѧو مثѧѧال تمهيѧѧدي صѧѧنع بواسѧѧطة عمليѧѧة تѧѧصنيع مؤتمتѧѧة   ان شѧѧكل قالѧѧب البثѧѧق 

 في هذه الاطروحة هو سѧطح       وضفتالتي  ) Chaitian(السطح الناتج من طريقة خوارزميه التقسيم       

  .ثية الابعادلادقيق وآفوء خصوصا في السطوح الث

                يѧѧѧѧه الفѧѧѧѧي حالѧѧѧѧة تقن  )Chaitian ( خوارزميѧѧѧѧة التقѧѧѧѧسيم   وطѧѧѧѧورتفѧѧѧѧي هѧѧѧѧذا البحѧѧѧѧث تبنيѧѧѧѧت      

)Uniform B-spline (لتحديد نصف قطر الاداة الامثل) صف  ,)شبه عملية انهاء سطحيѧفنتيجة ن

بينمѧѧا فѧѧي حالѧѧة ) mm4( هѧѧو) CRHS(قطѧѧر الاداة فѧѧي حالѧѧه سѧѧطح شѧѧكل القالѧѧب المѧѧصمم بطريقѧѧة  

  المولѧد بطريѧق  حوللѧسط , )mm5( هѧو  )Quartic Uniform) B-spline الѧسطح المولѧد بطريѧق   

)Quantic Uniform B-spline (  وѧه)mm3( ,        عѧشغلة مѧسطوح المѧة الѧسن دقѧائج تحѧذه النتѧه

 تغييѧر طѧول     والѧذي يقѧود الѧى   )side step(زيادة تكرار التقسيم وذلك يѧؤثر مباشѧرتا علѧى تѧصميم     

  .وتصميم مسار الاداة

قلѧت الѧى     والتѧي ن   )Matlab( صممت بواسѧطة برنѧامج       ة المطلوب وحان البيانات التصميمية للسط   

لѧѧثلاث عينѧѧات ) G-code( وبѧѧرامج   للحѧѧصول علѧѧى محاآѧѧاة عمليѧѧة التѧѧشغيل )Surfcam(برنѧѧامج 

  صممت لنظام) G-code(ان برامج ) وتقنية التقريب CRHSصممت بواسطة (

)FANUC 15 MB systemاورѧѧي المحѧѧرمج  ,) ثلاثѧѧع المبѧѧة القطѧѧى ماآنѧѧذت علѧѧا نفѧѧا انهѧѧآم 

(Hermle C30U dynamic)اѧѧس محѧѧي ذات خمѧѧو  ة ور حرآѧѧات هѧѧدن العينѧѧومعUREOL 

(Epoxy Resin)لذلك فان هذه العملية انجزت بدون استخدام سوائل تبريد  .  
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