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Abstract

This thesis focuses on the computer aided design, manufacturing,
(CAD/CAM), Subdivision algorithm, and the dies design theory like
Constant Ratios of Successive Generalized Homogeneous Strain
Increments (CRHS).

The representation of surfaces in smooth, parametric form is of central
importance in mechanical engineering. In order to machine a shape using a
computer, it is necessary to produce a computer-compatible description of
that shape.

A comparison has been made between the surfaces generated by CRHS
method and the surfaces generated by approximation techniques (Quartic
Uniform B-spline technique and Quantic Uniform B-spline technique).

An Extrusion die profile is preliminary example which has been
manufactured by CNC-milling process. The output surfaces from the
Chaitian's subdivision algorithm which are employed in this thesis are
highly efficient and accurate especially in 3D surfaces.

In this research, the Chaitian's Subdivision algorithm has been adopted
and developed in Uniform B-spline technique case, to find the optimum
cutter radius, so optimum cutter radius result (semi surface finishing
process) for Die profile surface generated by CRHS method is (4mm),while
for the surface generated by Quartic Uniform B-spline technique it
is(bmm), and for the surface generated by Quantic Uniform B-spline
technique it is (3mm),these results improve the surface accuracy of
machining when the subdivision iteration increases, and that affects
directly the side step design ,which leads to change the toolpath length and
design .

The interior data of the desired surfaces, designed by Matlab Software

which have been transformed to Surfcam software to get the machining



process simulation and G-code programs for the three samples (designed
by CRHS and approximation method); this G-code program has been
designed to 3-axis FANUC 15 MB system.

The G-code programs have been implemented on CNC machine (Hermle
C30U dynamic, 5-axis AC-kinematics, and the samples material is UREOL

(Epoxy Resin), the machining process is achieved without a Lubricant.
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CHAPTER ONE Introduction 1
CHAPTER ONE

Introduction

1.1 Introduction

CAD/CAM (computer-aided design/computer-aided manufacturing)
systems are an application to development of traditional design and
manufacturing function. CAD is the part where the products are being
designed with the help of computers, while CAM systems are those
involving the efficient use of computer technology in the planning,
management and control of the manufacturing function. The link between
CAD/CAM is achieved with the use of computerized environment. The
application of CAM in the manufacturing can be either "off-line" in which
case the computer does not have direct connection with the process and the
"On-line" in which the computer is directly connected with the process,
controls the production, directs the machines and also receives information
about current status, problems, breakdowns or needs 1.

Computer - aided design "CAD" can be most simply described as "using
a computer in the design process". It involves any type of design activity
which makes use of the computer to develop, analyze or modify an
engineering design.

A "CAD" system consists of three major parts:-
1. Hardware: - computer and input / output.

2. Operating system software.

3. Application software: - CAD package.

The graphics software such as "DXF format" used in this research is the
collection of programs written to make it convenient for a user to operate
the computer graphics system.

The most basic functions of AutoCAD are the 2D drafting functions. 2D
geometry such as lines, circles, curves and so on can be defined. Precise 2D
drawing capabilities and a full range of drafting functions such as

"automatic dimensioning of drawings" provide powerful tools for
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draftsmen in creating technical drawings or engineering plans. Also, the

power of the computer in storing and manipulating large amounts of data
can be used to replace large drawing vaults and archiving facilities with

electronic forms of data storage, such as magnetic tapes 2]

1.2 CAD System

Computer-Aided Design system (CAD) is defined as the involvement of
the computer into design activities and very often is associated with the use
of interactive computer graphics system. There are many advantages in

using a CAD system such as:

e [t increases the productivity of the designer. CAD systems aid the
designer to conceptualize the product more easily thus reducing the

time needed for synthesizing.

e It improves the quality of the design by enabling the designer to
perform more complicated engineering analysis and consider

a larger number of design alternatives.

e It improves design documentation. The graphical output of a CAD
system 1s superior to manual drafting, fewer errors and drawings

standardization results in better documentation.

e [t creates a manufacturing database during the creation of the product
design documentation such as dimensions. Much of the required

data base to manufacture the product is also created.

In the CAD system there are many processes that must be followed to
design a new product; one of the processes related to this work is

Geometric modeling 31,
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1.2.1 Surface Modeling

Surface modeling is a graphical technique used to define and describe
surfaces. A wire frame model can only describe the edges or boundaries of
a part. Points between the boundaries of a part cannot be defined with wire
frames. Surface models define not only the edges of a part, but also the
surface between edges. Surface models are usually produced after the wire
frame boundaries have been created. The surface between the wireframe
boundaries is then defined. After the surface is defined it can be displayed
with or without hidden lines. Each surface can be shaded in different tones
of gray or colors. There are two basic approaches to3-D surface

modeling [31.
1. Polygon Mesh
2. Parametric Bicubic Patches.
1.2.1.1 Polygon Mesh

A Polygon mesh is a set of connected polygons which form bounded
planar surfaces. Figure (1.1.a) illustrates polygon mesh. The exterior of
most structures can be represented by a polygon mesh. The main
disadvantage of this method is that the representation is only approximate.
Polygon mesh is a collection of edges, vertices and polygons. Vertices are
connected by edges, and the polygons can be thought of as sequences of
edges or vertices. There are three ways of defining a polygon:

a) By vertex coordinates
b) By pointing into a vertex list
c) By pointing into an edge list.

Among these, the third one is the best for consistency testing, since it

contains the most information. The edges are shared in many structural

models .
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Figure (1.1.a): 3-D surface modeling (Polygon mesh).

1.2.1.2 Parametric Bicubic Patches

Parametric Bicubic Patches define the coordinates of points on a curved

surface in terms of bicubic (two cubic) equations. The boundaries of the

patch are parametric cubic curves. Fewer bicubic patches than polygonal

patches are needed to represent curved surface for fixed accuracy.

a) Interpolation method 31,
x=x,y=1f(x),z=g(x)

b) Parametric representation .

X(t)=at’ +b t> +c t+d, )
Y(t)=a,t’ +b,t* +c t+d, p

Z(t)=a,t’ +bt> +c t+d, )

(3]
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There are three important parametric cubic curves:
» Hermite Method. Figure (1.1.b) illustrates Hermite bicubic surface.
= Bezier Technique. Figure (1.1.c) illustrates Bezier bicubic surface.

» B-spline Method. Figure (1.1.d) illustrates B-Spline bicubic surface.
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Figure (1.1:b) 3-D surface modeling ( Hermite bicubic surface).
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Figure (1.1.c): 3-D surface modeling (Bezier bicubic surface).
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Figure (1.1.d): 3-D surface modeling (B-spline bicubic surface).

Table (1.1): Make comparison between the surfaces (relation between the surface
and the control points.)

NO#

Surface type

Bezier

Uniform B-spline

Hermite

The surface follows the
shape of the control point
polygon and this point in
sensitive in this surface

type.

The curve follows the shape
of the control point polygon
and is constrained to lie in
the convex hull of the
control points.

The surface follows the
shape of the control point
polygon and this point in
insensitive in this type.

The ability to estimate the
surface shape from the
control polygon is positive
(So it used in
manufacturing and in
CAGD) .

The ability to estimate the
surface shape from the
control polygon is Negative
(So it was wused with
subdivision algorithm
widely to decrease this
negative point).

The ability to estimate the
surface shape from the
control polygon is Negative
and depends on the first
derivative for special
control points.

The first and last control
points are the end points
of the curves segment

The surface didn't contact
the control points while it
was controlled by the
control points coordinates.

In cubic case, the shape is
oriented by the first and the
last control points and the
line tangent (first derivative
for this first and last control
point).
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1.3 CAM system

The computer aided manufacturing (CAM) software tools found for
manufacturing procedures that use computers to assist in the planning and
production of manufacturing processes from inventory control to the
programming of machine tools. The communication between computer-
aided design and computer aided Manufacture has been developed.
However, the possibility for the CAM user to inspect or revise the
manufacturing systems capability description is very limited. Generally
a CAM software user chooses a predefined standard machine and standard
tools. The concept of such systems is based on the use of information and
data from the CAD Process directly after necessary modification in the
CAM procedures. The CAM system helps to generate cutter location data

and post-process which creates part programming (G - Code) 4,

1.4 Application of CAD/CAM in Metal Forming

With the ongoing rapid improvements on the areas of Computer Aided
design, Computer Aided Manufacturing some attempts for developing an
integrated extrusion die design system have been made. The new and
improved 3D design packages supply the designer with ample possibilities
to create a realistic model of the die. All features on the die, even the
smallest, can be defined completely. In a Computer Aided Manufacturing
environment this allows for direct data transfer to the CNC-machines. the
subdivision surfaces algorithm improve existing design rules, and develop
new design rules or just improve the general understanding of the extrusion
die design. Furthermore, the CNC-machines may be programmed with the
help of the 3D model and the design application must incorporate the

limitations and possibilities of the available machines and tools.

A computer based design application will help the experienced die
designer to progress from the design of the profile to the design of the die

by supplying him with the maximum support without limiting him in his
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possibilities. The support should, among others, incorporate the

maintenance of feature databases, the presentation of alternatives,
calculation of mechanical properties and the maintenance and use of the
knowledge database. The die designer or application manager must be able
to incorporate new design insights into the application without much effort

or the need to re-program the entire application.
1.5 Subdivision Algorithms

Subdivision curve and surface are valued in geometric modeling
applications for their convenience and flexibility. They permit the
representation of objects of arbitrary topological type in a form that is easy
to design, render and manipulate. While they can be used to model smooth
objects, they can also be extended to model objects with boundaries and

sharp features 2

Subdivision schemes that generalize B-spline representations are
particularly useful. Although B-spline (and NURBS) surface representations
are prevalent representation in geometric modeling, they cannot model
objects of non-planar topology or objects possessing sharp features without
cumbersome patch stitching and curve trimming. However, B-spline
representations are easy to analyze because they are piecewise polynomials
(or rational) in form. Subdivision surfaces, on the other hand, are defined as
the limit of repeated refinement of a 3D control point mesh. In general, this
limit does not result in a closed form representation. Therefore,
conventional methods of analyzing surfaces are inadequate since they

depend on representations such as polynomial or rational function.

There are also techniques for deriving exact formulas for points and normal

on the limit surfaces.

The elegant simplicity and practical advantages of subdivision
algorithms have made them useful for particular applications. For example,

they are ideal for quickly rendering an object where a piecewise planar
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model suffices. With the capability to calculate exact points and normal on

the limit surface, subdivision algorithms are finding wider acceptance for
applications that require smooth surfaces. With the added capability of
creating sharp features, subdivision surfaces can be applied to represent

even more realistic objects.

Subdivision surfaces are also making fundamental contributions to new
application areas in geometric modeling. For example, they are a key
element in the multiresolution representation for optimized surface

fitting @,

This thesis examines two topics related to subdivision surfaces. First, it
has been shown how piecewise smooth subdivision scheme can be

analyzed. Second it presents an engineering application.

1.6 Constancy of the Ratio of the Successive Generalized Homogeneous
Strain-increment (CRHS) Concept.

This concept of tool design is based upon the basis of homogeneous
strain for the metal forming operation, which represents a function of the
physical dimensions of the engineering material to be formed. The die
surface profile or tool profile can be produced by using this concept,
because the forming pass is divided into number of sections (n) depending

on the expression of CRHS through these sections, as follows "

8H2 —ng 8H3 _gH2 an TEHL e (1.3)

= = e —————=constant =S
€n, —€n, En, —En €y

a gHVFZ

n-1

where (ey,) 1s the value of homogeneous strain at the section (n) through
the forming pass. But (S) is a constant called ‘Rate of Deformation’, it does
not depend on the time because it is related to the deformation rate and has
no relation to the strain rate. The value of (S) can be taken randomly, if it
has a value:
S<1: it means that the rate of deformation is (Decelerated), and it has a sign

of (DCRHS).
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S=1: the rate of deformation is (Uniform), and it has a sign of (UCRHS).

S>1: the rate of deformation is (Accelerated), and it has a sign of (ACRHS)

as shown in Figure (1.2).
The constant (S) may take different values, but the experience in the
metal forming tool design indicates that the range in between (0.8 —1.2) is

sufficient for most applications. In this study, the value (S = 0.8) is

considered as a decelerated rate of deformation, and the value (S = 1.2) for
[6]

the accelerated rate

R (mm)

DIE RADIUS

10 | T T T T T T T T T T T T
4 6 8 10 12 14

DISTANCE FROMDIE INLET ~ Z (mm)

Fig. (1.2): The compounds die (CRHS) surface profile along the die inlet-exit [e]
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1.7 Aim of this Research:

This aim of this research is:

1. Investigate subdivision surfaces such as Bezier, B-spline surface
models by approximation technique, especially the Chaitian's
Subdivision algorithm for Uniform B-spline technique, this
technique could be used in reconstruction surface to produce
smoother surface, then submit these curves and surfaces in

production field.

2. Generate toolpath for milling process to CNC machine to make the
die profile for Direct extrusion process and use the theoretical design
like (CRHS) as guide to apply this algorithm, and make comparison
between them, as well as find the deviation between the surface (Die
profile shape) which is made by CRHS method, Quartic Uniform
B-spline technique and Quintic Uniform B-spline technique which is
developed from Chaitian's algorithm, and the surfaces after exposure

to milling process.

3. The representation of surfaces in smooth, parametric form is of
central importance in mechanical engineering. In order to machine a
shape using a computer, it is necessary to produce a computer-
compatible description of that shape.

4. These surfaces, for which the cutter contact points are generated for
the proposed algorithms, are machined using CNC machine (Hermle
C30U dynamic, 5-axis AC-kinematics) and then this data is used to
generate cutter location data represented by G-Code format which is

implemented on this CNC machining.
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CHAPTER TWO

Literature Survey

2.1 Introduction:

The researches published on the subject of Subdivision algorithms for
the surfaces and curves is very important because it will give the researcher
good background on his research and the sequence development of this
research, this technique was invented in the 1978, it continues
development, and the research has varied since then in more than one
direction, and is more than one field, this direction is represented in these
points:

1. Approximating (not interpolating original vertices).

2. Interpolating the original vertices.

3. Development of the subdivision surfaces and curves algorithm to

service the field which they need.
For this purpose and to gain benefit, the researcher reviews the related
literature as follows:
2.2 Subdivision Algorithms:

Hoppe, H., (1994); Introduces general method for automatic
reconstruction of accurate, concise, piecewise smooth surfaces from
unorganized 3D points.

Previous surface reconstruction methods have typically required
additional knowledge, such as structure in the data, known surface genus,
or orientation information. In contrast, the method outlined requires only
the 3D coordinates of the data points.

This method is able to automatically infer the topological type of the
surface, its geometry, and the presence and location of features such as
boundaries, creases, and corners.

The reconstruction method has three major phases:
1) Initial surface estimation,

2) Mesh optimization.



CHAPTER TWO Literature Survey 13
3) Piecewise smooth surface optimization. A key ingredient in phase 3, and

another principal contribution is the introduction of a new class of
piecewise smooth representations based on subdivision.

The effectiveness of the three-phase reconstruction method is demonstrated
on a number of examples using both simulated and real data "),

Zorin, D., and Kristjansson, D. (2000) propose to use a different set of
basis vectors for evaluation, which, unlike eigenvectors, depend
continuously on the coefficients of the subdivision rules. The approach
becomes possible to define evaluation for parametric families of rules
without considering excessive number of special cases, while improving
numerical stability of calculations it demonstrates how such bases are
computed for a particular parametric family of subdivision rules extending
Loop subdivision to meshes with boundary, and provides a detailed
description of the evaluation algorithms .

Joy’'s, K. 1. (2000) his paper basis depends on the binary subdivision of
the uniform B-spline surface, which is defined by initial polygonal mesh,
along with a subdivision (or refinement) operation which, given a
polygonal mesh, will generate a new mesh that has a greater number of
polygonal elements, and is hopefully “closer” to some resulting surface, by
repetitively applying the subdivision procedure to the initial mesh, we
generate a sequence of meshes that (hopefully) converges to a resulting
surface ¥,

Joy, K. 1. (2000) introduces Subdivision methods for curve generation
based upon a procedure which successively refines a control polygon into a
sequence of control polygons that, in the limit, converges to a curve, and
develop the refinement method for a quadratic uniform B-spline curve; the
curves are commonly called subdivision curves as the refinement methods
are based upon the binary subdivision of uniform B-spline curves 1%,
Vlachos, A., Peters, J., Boyd, C., and Mitchell, J.L. ,(2001) introduce

curved point-normal triangles, or short PN triangles, as an inexpensive
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means of improving visual quality by smoothing out silhouette edges and

providing more sample points for vertex shading operations. Specifically,
PN triangle generation and sub-triangulation are to be inserted between the
vertex-and-primitive-assembly stage and the vertex-shading stage of the
graphics pipeline . The geometry of a PN triangle is defined as one cubic
Bezier patch. The patch matches the point and normal information at the
vertices of the flat triangle. Its normal is a separate linear or quadratic
Bezier interpolate of the data ™.

Amresh, A., Farin, G., and Razdan, A., (2001) introduce two methods
of adaptive subdivision for triangular meshes that make use of the Loop
scheme or the Modified Butterfly scheme to get approximating or
interpolating results respectively. The results are obtained at a lower cost
when compared with those obtained by regular subdivision schemes. The
first method uses the angles between the normal of a face and the normal of
the adjacent faces to develop an adaptive method of subdivision. The other
method relies on user input, i.e. the user specifies which parts of the mesh
should be subdivided. This process can be automated by segmentation
techniques, e.g. watershed segmentation, to get the areas in the mesh that

need to be subdivided 2.

Bertram, M., and Hagen, H., (2001) propose a modified Loop
subdivision surface scheme for the approximation of scattered data in the
plane. Starting with a triangulated set of scattered data with associated
function values, this scheme applies linear, stationary subdivision rules
resulting in a hierarchy of triangulations that converge rapidly to a smooth
limit surface. The novelty of this scheme is that it applies subdivision only
to the ordinates of control points, whereas the triangulated mesh in the
plane is fixed. The modified subdivision scheme defines locally supported,
bivariate basis functions and provides multiple levels of approximation

with triangles ™.
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Claes, J. (2001) present a new modeling paradigm, providing the

possibility of locally choosing an interpolating variant of the
conventionally approximating subdivision scheme. His approach combines
the advantages of approximating schemes with the precise control of
interpolating schemes. Unlike other solutions that mostly focus on locally
changing the weighting factors of the subdivision scheme, this thesis keeps
the underlying uniform scheme intact. This method is based upon
introducing additional control points on well-chosen locations, with
optional interactive user control over the tangent plane (or surface normal)
and the tension of the surface near the interpolating control points.

The same techniques used for surface modeling and editing are also
adapted to implement a versatile free-form deformation tool, especially
designed for 2D textured objects based on subdivision surfaces applied in
2D M,

Stam, J. and Loop, C. (2002) provide new subdivision operator that
unifies triangular and quadrilateral subdivision schemes. Designers often
want the added flexibility of having both quads and triangles in their
models. The new scheme is a generalization of the well known Catmull-
Clark and Loop subdivision algorithms, and show that surfaces are G;
everywhere and provide a proof that it is impossible to construct a G,
scheme at the quad/triangle boundary. However, it provides rules that
produce surfaces with bounded curvature at the regular quad/triangle
boundary and provides optimal masks that minimize the curvature
divergence elsewhere. It demonstrates the visual quality of the surfaces
with several examples of categories and subject descriptors curve, surface,

solid, and object representations ™.

Gross, N. (2004) introduces a new algorithm based on subdivision
techniques which have been developed that efficiently interpolates

a quadrilateral mesh of arbitrary topology with almost globally curvature
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continuous fair NURBS surfaces. The Algorithm proposed is (faired

interpolating NURBS) algorithm. The output of NURBS surfaces can be
exported to commercial CAD systems in standards of data exchange, like
IGES or STEP. This algorithm tackles the following problem:

1. Subdivision surfaces tend to have oscillations around extraordinary
vertices and thus do not obtain a measure of surface fairness
demanded in e.g. automotive design.

2. Subdivision techniques are not compatible with standards of data
exchange, like IGES or STEP.

3. Approximating algorithms like the commonly used Catmull-Clark
algorithm shrink in relationship to the input mesh.

4. Gaps between patch boundaries and discontinuous parameter lines

are inherent to spline representation 1°.

Barthe, L., and Kobbelt, L. (2004) extend the standard method to
derive and optimize subdivision rules in the vicinity of extraordinary
vertices (EV). Starting from a given set of rules for regular control meshes,
we tune the extraordinary rules (ER) such that the necessary conditions for
C, continuity are satisfied along with as many necessary C, conditions as
possible. The approaches sets up the general configuration around an EV
by exploiting rotational symmetry and reformulating the subdivision rules
in terms of the subdivision matrix' eigencomponents.

This method:

1. improves the curvature behavior around EVs.

2. optimizes several subdivision rules, i.e. not only the one for the EV

itself but also the rules for its direct neighbors.

3. demonstrates capability to tune the ERs for the well-known Loop

scheme and deriving ERs for a p3-type scheme based on 6-direction

Box-spline 1.
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Yvonnet, J. (2004) investigates the analysis of a piecewise smooth

subdivision scheme, and applies the scheme to reconstruct the objects from
non-uniformly sampled data points.

It extends the use of eigenanalysis and characteristic maps to analyze a
piecewise smooth subdivision scheme that generalizes quartic triangular
B-spline, and examines some topics related to subdivision surfaces:

1. It shows how a piecewise smooth subdivision scheme can be
analyzed.

2. It derives formulas for points and tangents on the limit surface.

3. It presents an engineering application, and describes an algorithm for
creating a surface that approximates an object from non-uniformly
sampled data points and interpolates boundary curves 121,

Hakenberg, J. P. (2004) performed derive stationary subdivision rules
on bi-uniform volumetric grids consisting of pair wise combinations of
tetrahedral, octahedral, triangular prisms and cubes and refine the existing
framework of quasi-interpolates so that weight stencils are obtained by
algebraic manipulation. The joint spectral radius test proves that the
combined schemes yield C, limit functions.

Furthermore, he presents an algorithm to subdivide an unstructured mesh
consisting of the basic shapes enumerated above. The subdivision rules are
generalized, such that smoothness is preserved across all faces and the
effort of implementing the scheme remains low %,

Seeger, S., Hormann, K., Hausler, G., and Greiner, G. (2005) studied
how the well-known process of triangle mesh subdivision can be expressed
in terms of the simplest mesh modification, namely the vertex split.
Although this basic operation is capable of reproducing all common
subdivision schemes if applied in the correct manner, they focus on

Butterfly subdivision only for the purpose of perspicuity *°!.
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Schaefer, S., Levin, D., and Goldman, R. (2005) studied subdivision

schemes generate self-similar curves and surfaces. Therefore there is a

close connection between curves and surfaces generated by subdivision
algorithms and self-similar fractals generated by Iterated Function Systems
(IFS). It is demonstrated that this connection between subdivision schemes
and fractals is even deeper by showing that curves and surfaces generated
by subdivision are also attractors. they illustrate this fractal nature of
subdivision, and present the derivatives which are associated with the curve
type for many different subdivision curves and surfaces without
extraordinary vertices, including B-splines, piecewise Bezier, interpolator
four-point subdivision, bicubic subdivision,three-direction Quartic box-
spline subdivision and Kobbelt's subdivision surfaces “.

2.3 Analysis Subdivision Algorithms:

Claes, J. (2001) eigenanalysis is a handy tool to study the limit behavior
of a subdivision curve scheme. A single step can be described in matrix
form. In order to cope with endpoint conditions, the matrix formulation has
the problem that the matrix should be double in size after every subdivision
step. Therefore, usually a matrix of infinite dimensions is used. Such a
matrix can either represent the subdivision of an infinite chain of points, or
a closed curve. For many practical investigations, also a very limited
matrix can also be used. In that case, the matrix represents a local
environment that shrinks with every subdivision step.

As an example, is the subdivision scheme for cubic B-splines ™41,

Schweitzer, J. E (2004) introduced theoretical basis for designing
subdivision rules for various sharp surface features, and presents an
analysis to determine properties of the limit surface for the rules that define
a piecewise smooth subdivision surface. It shows that these surfaces are

well-defined tangent plane, and behave as expected at singular points.
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Analysis of the surface provides a more general framework for

examining a subdivision scheme and accomplishes the specific tasks for the

piecewise smooth subdivision scheme P!,

2.4 Applications for Subdivision Algorithms

Lounsbery, J.M. (1994) presents several applications of this work,
including smooth level-of-detail control for graphics rendering,
compression of geometric models, and animation previewing. The resulting
algorithms are shown to run quite efficiently in most cases, and another

application is in industrial design and computer animations %2,

Claes, J. (2001) gives an application of the subdivision techniques
outside the world of surface modeling, where subdivision surfaces are used
in 2D as a base for free-form deformations to fluently manipulating 2D
animation objects, and it's also used in engineering applications, in
combination with the finite element method. Not only the outer surface, but
also the inner structure of an object is important, subdivision volumes are

used 41,

Gross, N. (2004) introduces subdivision algorithms which have obvious
advantages over spline representation also in the engineering area, as they
can calculate arbitrary topological surfaces in a single calculation step. For
example, they can eliminate problems with gaps between patch boundaries
and discontinuous parameter lines inherent to spline representation. The
new algorithms based on subdivision techniques have been developed that
efficiently interpolate a quadrilateral mesh of arbitrary topology with
almost globally curvature continuous fair NURBS surfaces. The Algorithm
is called FIN (faired interpolating NURBS) algorithm. The output NURBS
surfaces can be exported to commercial CAD systems in standards of data
exchange, like IGES or STEP.
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Some investigation has begun of subdivision surfaces which may serve

as input to NCmilling. Even though the advantages of subdivision surfaces
for this task have been recognized, the difficulty has been to date to
calculate tool paths on the subdivision surface, as these algorithms have
only been developed for spline surfaces in the past. This algorithm (FIN)
combines the two surface representations; these former difficulties are
inherently overcome. Tool-paths can be generated on the FIN surfaces with

standard tools like Mastercam ™,

Schweitzer, J.E. (2004) in the interest of widening the application of
subdivision surfaces, investigates a problem motivated by engineering
practice, and addreses the reconstruction of an object from non-uniformly
sampled 3D data.

Created subdivision surfaces approximate object that have been sampled
densely and uniformly. Costs associated with this data requirement include
sampling time and expense, the difficulty of obtaining uniform samples
from complex objects poses another problem. For example the physical
dimensions of a scanner may make it impossible to reach certain regions
such as in holes and pockets. There may also be regions that are occluded
from the view of a scanner. For these reasons they developed an algorithm

that reconstructs an object from non-uniform sampled data ..
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2.5 Listing the practical part for this thesis with respect to previous

literature survey

1. This thesis it has used Chaitian's subdivision algorithm (Linear
subdivision) for curves, and surfaces used (Bezier and Uniform
B-spline techniques), then employees it in production field after
making some analysis to this curves and surfaces.

2. This thesis reviews Doo and Sabian's algorithm (which use
Quadrilaterals division), while another method reviews others like
Loop algorithm (which use triangles division) used with many
random and regular shapes by using the linear subdivision to these
shape.

3. The proposed algorithm (Chaitian's subdivision algorithm) is
developed in this thesis especially for Uniform B-spline curve after
making more than one division iterations (Quartic Uniform B-spline,
and Quantic Uniform B-spline techniques).

4. The refined B-spline technique has been used to create Die profile
for direct extrusion shape by trial and error method and by moving
the control points to arrive to the profile shape which is created
before by theoretical design method like (CRHS). Comparison is

made with the surface (Die shape) for these three surfaces.
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CHAPTER THREE

Bezier and Uniform B-spline Technology

3.1 Approximation of Curves and Surfaces:

Many surfaces have mathematically complex or computationally
expensive representations. For some applications, an approximation to
these surfaces is adequate.

The problem of constructing surfaces from a set of points arises in
numerous applications such as automobiles and ship hull design, scientific
visualization, and geometric modeling. There are many variations of this
problem, based on the form of data on extra information about the input,
and requirements for the resulting surface.

This thesis focuses on the approximation of known surfaces. A surface

will be approximated by sampling it first, and then building an
approximating surface that interpolates the samples (231,
Computer-aided modeling techniques have been developed since the
advent of NC milling machines in the late 40’s. Since the early 60’s Bezier
and B-spline representations have evolved as the major tool to handle
curves and surfaces %1,

These representations are geometrically intuitive and meaningful and
they lead to constructive numerically robust algorithms.

The core concepts of Computer-aided Geometric Design (CAGD) with
the intent to provide a clear and illustrative presentation of the basic
principles as well as a treatment of advanced material, including
multivariate splines, some subdivision techniques and constructions of
arbitrarily smooth free-form surfaces.

One way to categorize surface fitting schemes is by locality of data used in

constructing a portion of surface. A global scheme uses arbitrarily many of

the data points in constructing each portion of the surface.
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Whereas a local scheme only considers those data points near the portion

of the surface being created, local schemes construct piecewise continuous
surfaces, and ensure that adjacent surface patches meet "smoothly" [231,
By introducing a fourth parameter, (u), into the coordinate description of
curve, we can express each of the three Cartesian coordinates in parametric
form. Any point on the curve can then be represented by the vector
function:
Pw=x@W),yw,zw) ... (3.1)
Usually, the parametric equations are set up so that parameter u is defined
in the range from (0) to (1).
Parametric equations for surfaces are formulated with two parameters (u)
and (w). Coordinate positions on a surface are then represented by the
parametric vector function:
P (u, w)=(x (u, w), y (u, w), z (u, w)) uwe [1,0] .......... (3.2)
Many techniques exist for setting up polynomial parametric equations
for curves and surfaces, given the coordinates for the control points. Basic
methods for displaying curves specified with control points include the
Bezier and B-spline curves ),
In this chapter the Bezier and Uniform B-spline technique is studied in
different freedom degrees as case study, with making all calculations,

mathematical derivatives and drawing the curve and surface for the

proposed technique.
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3.2 Bezier Curves

In this setting every polynomial curve segment can be represented by its
so-called Bezier polygon. The curve and its Bezier polygon are closely
related. They have common end points and end tangents, the curve segment
lies in the convex hull of its Bezier polygon, etc. Furthermore, one of the
fastest and numerically most stable algorithms used to render a polynomial

curve is based on the Bezier representation %,

Mathematically a parametric Bezier curve is defined by ®°':

pu)=2", B,wP, (3.3)
B, i(w)= cin,u'G-w™ (3.4)
c(n,i)=—1

t!n-1)! (3.5)

In Matrix Form:

For the Bezier curve, when n=2 equation (3.3) is rewritten in matrix

form as:
p,
p(u):[(1—2u+u2) (2u-2u2) uz] Pl e (36)
pz
Or as
1 -2 1]Pp.
p(u)=[u2u1] 2 2 olp | e (3.7)
1 0 O0fp,
U=[u’u 1, p=[p, p; p,I' (3.8)
1 -2 1
Moy =[-2 2 0 (3.9)
1 0 0

This allows to rewrite the equation even more compactly as

P(w=UM,,P e (3.10)
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3.2.1 Bezier Curve Properties:

1. A Bezier curve is a polynomial.
The degree of the polynomial is always one less than the number of
control points. In computer graphics, we generally use degree (3).
Quadratic curves are not flexible enough and going above degree (3)
gives rises to complications and so the choice of cubic is the best
compromise for most computer graphics applications.
2. The curve follows the shape of the control point polygon.
It is constrained within the convex hull formed by the control points.
3. The control points do not exert 'local' control.
Moving any control point affects the entire curve to a greater or lesser
extent. All the basis functions are everywhere positive except at the
pointu=0andu=1
4. The first and last control points are the end points of the curves
segment
5. The tangent vectors to the curve at the end points are coincident with
the first and last edge of the control point polygon.
6. Moving the control points alters the magnitude and direction of the
tangent vectors.
This is the basis of the intuitive 'feel' of a Bezier curve interface.
7. Variation diminishing property
The curve does not oscillate about any straight line more often than
the control point polygon.
8. The strange mix of points on and off the curve
9. Non localness
As soon as you move one control point, you affect the entire curve
10.Relationship between the degree of the curve and the number of

control points 7.
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Case Study (1)

Suppose the initial control points of the desired two curves are:
a) p1=(100,200,0), p,=(250,200,0),and p;=(250,100,0).
b) p1=(200,100,0), p»=(500,300,0),and p;=(400,250,0).

And n=2, draw the two Bezier Curves.

% Rearrange the control points in matrix form as follows:
a) P;;=(100,200,0) p12=(250,200,0) p13=(250,100,0)
b) P;;=(200,100,0) p12=(500,300,0) p13=(400,250,0)

¢ Use the equation (3.7) to determine p(u)

¢ Plot the control points and the curves result from equation (3.7) as

shown in Figure (3.1: a, and b), with (u) ranging from (0) to (1).
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Figure (3.1.a) Bezier curve with three control points n=2 (regular
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0 e
200 | f"l’
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210}

3
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Figure (3.1.b) Bezier curve with three control points n=2(irregular

control points).
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For a cubic Bezier curve, with_n=3, equation (3.3) is rewritting in matrix

form as:
o
p(w)=[(1-3u+3u?—u?) Bu-6u?+3u’®) Bu?-3u?) u®] gl ...... (3.11)
2
| Ps |
Or as
-1 3 -3 17][p-]
3 -6 3 O0||p
=[u® u? 1 L (3.12)
pw=[u” u” u 1} ol |p,
1 0 0 O0]|p;s]
Letting
3 12 _ T
U=[u’ w” u 1], p=[p, p, p, p,I' ... (3.13)
-1 3 -3 1
3 -6 3 0
MB(3)__3 30 o . (3.14)
1 0O 0 0
This allows to rewrite the equation even more compactly as
P(w)=UMy,Pp (3.15)

Case Study (2)

Suppose the initial control points of the desired two curves are:
a) p1=(50,100,0),p,=(200,100,0),ps=(200,20,0),and p,=(450,20,0).
b) p:1=(50,100,0),p,=(100,200,0),p;=(250,150,0), and p,=(150,50,0)

And n=3, draw the two Bezier Curve.

% Rearrange the control points in matrix form as follows:
a) Pllz(SO,IO0,0) pl2:(2009100:0) p13:(200a20a0) p14:(450320:0)
b) Py;=(50,100,0) p1,=(100,200,0) p;3=(250,150,0) p14=(150,50,0)

¢ Use the equation (3.12) to determine p(u)

¢ Plot the control points and the curves result from equation (3.12) as

shown in Figure (3.2: a, and b), with (u) ranging from (0) to (1).
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Figure (3.2.a) Bezier curve with four control points n=3 (regular control points).
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Figure (3.2.b) Bezier curve with four control points n=3 (irregular control points).

Obviously, the composition of these matrices varies with the number of

vertices, nt+1.So for n=4:

U=[u* v’ u?> u 1] ,P=[p- p, P, Ps Pal' e, (3.16)
1 -4 6 -4 1]
-4 12 -12 4 0

wo =6 T12 6 0 o (3.17)
-4 4 0 0 0
1 0 0 0 0]

P(w) =UMygyp (3.18)
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Case Study (3)

Suppose the initial control points of the desired two curves are:
pi=( 50,500,0) ,p,=(150,400,0), ps=( 0,300,0), p,=(200,200,0), and
ps=(120,100,0).
And n=4, draw the two Bezier Curve.
¢ Rearrange the control points in the ,matrix form as follows:
P;=( 50,500,0)  p;»=(150,400,0)  p13=( 0,300,0)  p14=(200,200,0)
p15=(120,100,0)
¢ Use the equation (3.18) to determine p(u)
¢ Plot the control points and the curves result from equation (3.18) as

shown in Figure (3.3), with (u) ranging from (0) to (1).
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-
-
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140}

100
0

20 40 ] & 100
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Figure (3.3) Bezier curve with five control points n=4.



CHAPTER THREE Bezier and Uniform B-spline Technology 30

The matrix form when n=5:

U=[u” u* v’ w> u 1] ,P=[p. p; p, P; P4 PS]T.........(3.19)
-1 5 -10 10 -5 1]
5 -20 30 -20 5 O
-10 30 -30 10 O O
M o0 V000 (3.20)
BG) (10 —-20 10 0 O
-5 5 0 O 0 O
1 0 0 0 0O O
T (3.21)

P()=UM_ p

Case Study (4)

Suppose the initial control points of the desired two curves are:
p1=( 0,0,0),p,=(50,500,0),ps=(150,0,0),p4=( 250,400,0),ps=(350,150,0),
And ps= (450,250,0).
And n=5, draw the two Bezier Curve.

% Rearrange the control points in the ,matrix form as follows:
P1,=(0,0,0) 1,=(50,500,0) p15=(150,0,0) p14=(250,400,0) p;5=(350,150,0),
p1s= (450,250,0)

¢ Use the equation (3.21) to determine p(u)

¢ Plot the control points and the curves result from equation (3.21) as

shown in Figure (3.4), with (u) ranging from (0) to (1).
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Figure (3.4) Bezier curve with six control points n=5.
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The matrix form when n=6:

U=[u6 wout uwd ourou 11 , P=[p. P, P, P3; Da p5 p6]T
1 6 15 -20 15 -6 1]
6 30 -60 60 30 6 0
15 -60 90 60 15 0 0 e (3.22)
=[-20 60 -60 20 0 0 0
B(6)
15 -30 15 0 0 0 0
6 6 0 0 0
1 0 0 0 0
UM 3.23
P(w)=UM_ p (3.23)
Case Study (5)

Suppose the initial control points of the desired two curves are:
p1=(50,600,0),p,=( 100,500,0),p;=(150,400,0),p,= (0,300,0) ,
ps=(300,150,0), pe= (75,150,0),and p;= (200,0,0).

And n=6, draw the two Bezier Curve.

% Rearrange the control points in the ,matrix form as follows:
P11=(50,600,0) P;,=( 100,500,0) p;3=(150,400,0) p14= (0,300,0)
p15=(300,150,0) p1=(75,150,0)  p17= (200,0,0)

¢ Use the equation (3.23) to determine p(u)

%+ Plot the control points and the curves result from equation (3.23) as

shown in Figure (3.5), with (u) ranging from (0) to (1).
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Figure (3.5) Bezier curve with seven control points n=6.



CHAPTER THREE Bezier and Uniform B-spline Technology 32
3.3 Bezier Surfaces

Bezier surfaces provide a flexible and powerful surface design tool.
However practical usage suffers from the necessity of specifying precise,
non intuitive mathematical information, e.g. position, tangent and twist
vectors 2.

A Cartesian or tensor product Bezier surface is given by

p(u,w) = Zzpij Bi.n (u) Bj,m (W) ; 0SU<LOSwWSL oereeeeeee (3.24)
i=0 j=0
! , _
B.(w)=—"wii-w (3.25)
' i!(n—1)!
3 P m—i (3.26)
Bym(W) = ) (j—w)™

JH(m — j)!
Thep;comprises an (nt+1)x(m+1) rectangular array of control points

defining the vortices of characteristic polyhedron of a Bezier patch.

So, the general matrix equation for Bezier patch is:

M., P MY wT. (3.27)

B,nxn* nxm~""B,mxm "' mx1

p(u,w)=U

1xn
where the subscripts on the matrices indicate their dimensions for a

bicubic Bezier patch (4x4).and expanded equation (3.27) becomes:

I (1-w)’

3w(l-w)* | ....(3.28)

3w? (1-w)

3
w

p(u,w)=[(1-u)’ 3ul-u)* 3u® (I-u) u’lp

The matrix P is the matrix which contains the points that define the

characteristic polyhedron #°.

Pu P Pz Pu
Py Pn P P e (3.29)
Psi P Piz Px
Ps P Pz Py

Implementing program to build the Bezier surface needs drawing the

block diagram which is shown in Figure (3.6) and explaining the main
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steps of the program while the detailed explanation of the proposed

program has been given in the flowchart shown in Figure (3.7).

A 4

Input
The Control points coordinate (x;, i, z;)
Counter for Increment value (Au,Aw)

A\ 4

Calculate
the p;(u,w),p,;(u,w),p,;(u,w)
from equation (3.27)

v

Output
Bezier Surface presentation,
Surf(Xi,yi,zi)

End

Figure (3.6): Block diagram of the proposed program depending on Bezier technique.
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( Start )

A 4

Input
The control points coordinates of surface vector
(n x m)

A 4

Input
The control points coordinates of surface
vector (n x m)

A4

Input

The matrix form B, and (n) value.

(n)

A 4

Input
The Increment value (Au, Aw)

A 4

U=0

w=0

»
P
A

y

Calculate
The pxi (u,W),pyi(u,W),pZi(u,W)
from equation (3.27)

v

W=W+AW
v

0<w<l

No

Yes

u=ut+Au

Yes

0<w<l

No

Output
Bezier Surface presentation

Figure (3.7): Flowchart of the proposed program depending on Bezier technique.
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The proposed program can represent the surface in graphical mode with

the software program Matlab (V7.0). Figures (3.8), (3.9), (3.10),(3.11),and

(3.12) show a final result of practical application of our proposed program.
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Figure (3.8) Bezier Surface ™ degree), n=2, Matrix form (3x3).
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Figure (3.9) Bezier Surface (3™ degree), n=3, Matrix form (4x4).
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Z-axis

Z-axis

-

Figure (3.10) Bezier Surface (4™ degree), n=4, Matrix form (5x5).

Bezier Surface / »

Figure (3.11) Bezier Surface (5™ degree), n=5, Matrix form (6x6).
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Figure (3.12: a, b, and c¢) Bezier Surface 6" degree), n=6, Matrix form (7x7)
with Control points.
a-Control polygon for Bezier surface with Matrix form (7x7).
b-Bezier surface (6 degree), n=6.
c- Bezier Surface (6™ degree), n=6, with control polygon for Matrix form
(7x7) with Control points.
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3.4 B-spline Curve

From the mathematical point of view, a curve generated by the vertices
of a polygon is dependent on some approximation scheme to establish the
relationship between the curve and the polygon.

The scheme is provided by choice of the basis function. Two
characteristics of the Bernstein basis, however, limit the flexibility of the
resulting curves. So, their is another basis, called the B-spline basis (from
Basis spline), which contains the Bernstein basis as a special case. This
basis is generally non-global. The non-global behavior of B-Spline curves
is due to the fact that each vertex B; is associated with a unique basis
function, thus, each vertex affects the shape of curve only over a range of
parameter values where the associated basis function is nonzero. The
B-spline basis also allows the order of the basis function and hence the
degree of the resulting curves to be changed without changing the number
of defining polygon vertices.

The uniform basis functions are defined by the following expressions [2e1,
N;;(w)=1 ift; <uc<t

. L (3.30)
=0 other wise

And

(u-t)N  (u (t -uN (u)
N (= oMbk i+Lk-1 (3.31)
bk t —t. t —t

1

i+k-1 i+k i+1

where k controls the degree (k-1) of the resulting polynomial in u and
also the continuity of the curve.
N+k+1:T ................ (332)
where T the number of knots.

The final equation of Uniform B-spline curve when k=3 is:

1
p;(n) = 5[(1 —u)’p; +(20° +2u+Dp, +u'p ] e (3.33)
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3.4.1 B-spline Properties:

l.

Controls points:

The curve follows the shape of the control point polygon and is

constrained to lie in the convex hull of the control points.

. Variation in diminishing property:

The curve does not oscillate about any straight line more often than the

control point polygon.

. Affine transformation compatibility:

The curve is transformed by applying any affine transformation (that
is, any combination of linear transformations) to its control point

representation.
Local Control:

A B-Spline curve exhibits local control - a control point is connected

to four segments (in the case of a cubic) and moving a control point

can influence only these segments '),

And the special properties for the Uniform B-spline curve:

% The join point on the value of u between two segments is called the
knot value.

% For uniform B-spline, knots are spaced at equal intervals in u.

¢ The blending functions are simple copies translated in u.

% In general uniform B-spline curves do not interpolate the end

points 1,
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Matrix Form:

When rewriting equation (3.33) using the matrix notation, Uniform
B-spline with k=3 % is:

1 -2 1 py
pi(u):%[uz u 1]j-2 2 0|l p, ; ie[l:n—=1] - (3.34)
1 1 0 [ Piny

Case Study (6)

Suppose the initial control points of the desired two curves are:
p1=(0,10,0),p,=( 20,30,20),p3=(40,-5,20)
And k=3, draw the Uniform B-spline curve.
¢ Rearrange the control points in the ,matrix form as follows:
P,;=(0,10,0) P;,=(20,30,20) p;3=(,40-5,20)
Use the equation (3.34) to determine p(u)

Plot the control points and the curves result from equation (3.34) as shown

in Figure (3.13), with (u) ranging from (0) to (1)

Ba

Femds

Figure (3.13) B-spline curve ™ degree), k=3, Matrix form (3x3) with Control
points.

And for cubic B-spline, when k=4 *!:

-1 3 -3

1| piy
3 -6 3 0 p:
pi(u)zl[u3 u’ u 1] P ie[l:n-2] - (3.35)
6 30 3 1|py
1 4 1 0

pi+2
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Derivative of the Uniform B-Spline Basis Functions with k=5:

The derivative for uniform B-spline with K=5 is the same for cubic but

with more complex solving equations (see Appendix A).
1
p.(u) =£[(u4 —4u’ +6u? —4u+1)p. +(—4u* +12u° —6u? ~12u+1)p.
+(5u* —8u’ +9u’® —60u +75)p. Ll ceeeerin (3.36)

From equation(3.36)the Matrix form(M)is theresult.

1 -4 5 0 0
-4 12 -8 0 0
M=_l6 6 9 0 0 oo (3.37)
24
-4 -12 -60 1 0
1 1 750 1
1 -4 5 0 0fpy
-4 12 -8 0 0| p;
Pi(u)=i[4u3 vu 16 -6 9 0 0lpy, ... (3.38)
—4 -12 =60 1 0| p;,
L7 0T ps

3.5 B-spline Surfaces
The natural extension of the Bezier surface is the Cartesian product,

B-spline surface is defined by

p(u,w) = Z Z pi,jNi,k (u) Nj,.l (W) vereenn (3.39)
i=0 j=0

Pu = Pjj

1e[s—1l:s+k—-2]

jelt—-1:t+1-2]

The p;jare control points and vertices of the characteristic polyhedron.

N, (w):N,;, (w): are the basis functions and they are the same as those of B-

spline curves [261,
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The equation (3.39) has been written as

p,.(u,w)=UMpMg W' e (3.40)
se[l:m+2-Kk]

te[l:n+2—1]

u,w €[0,1]

Implementing the program to build the Uniform B-spline surface needs

drawing the block diagram which is shown in Figure (3.14) and explaining
the main steps of the program while the detailed explanation of the

proposed program has been given in the flowchart that is shown in Figure

(3.15).

A 4

Input
the Control points coordinate (x;, i, Z;)
counter for Increment value (Au,Aw)

A 4

Calculate
the pxi(uaw)apyi(u,W)apzi(uaw)
From equation (3.46)

A 4

Output
Uniform B-spline Surface presentation,
Surf(xi,yi,zi)

A 4

End

Figure (3.14): Block diagram of the proposed program depending on Uniform B-spline

technique.
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|

Input
The control points coordinates of surface
vector (n x m)

A4

Input

The matrix form M, and (k) value.

(s)

A 4

Input
The Increment value (Au, Aw)

A 4

U=0

Calculate
The pxi (u’ W)7pyi (u’ W)’ pzi (u7 W)
From equation (3.46)

v

W=W+AW
v

0<w<l1

Yes

No

u=u+Au

Yes

Figure (3.15): Flowchart of the proposed program depending on Uniform B-spline

technique

0<u<l

No

Output

Uniform B-spline Surface presentation
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The proposed program represents the surface in graphical mode with the

software program Matlab (V7.0).Figures (3.16), and (3.17), show the final

result of a practical application of proposed program.
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Figure (3.16): Uniform B-spline surface k=3,(3x3).
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3.6 Chapter Summary

This chapter has focused on the approximation curves and surfaces for

Bezier and Uniform B-spline technology.
Firstly, it has reviewed the equation for the Bezier curve, and made some
case studies to get several matrices forms M; (gezery Starting from
(n=2,........ ,6) then reviewed the equation for the Bezier surface, so the
block diagram, and Flowchart of the proposed program for Bezier
technique is created.

Secondly, it has reviewed the equation for the Uniform B-spline curve
and made some case studies to get several matrices forms Msuniform B-spline)
for k=3,4,and derivative of the matrix form for K=5, then reviewed the
equation for the Uniform B-spline surface and this equation is solved to get
Uniform B-spline surfaces for K=3,4,5 ,after that block diagram, and
flowchart of the proposed program for Uniform B-spline technique are
created.

However the aim of this chapter is to review the technique for Bezier and
Uniform B-spline, and get the result as (M) matrices forms for both Bezier
and Uniform B-spline in different freedom degrees, which will be used in
the chapter four to implement the subdivision algorithm on these

techniques.



CHAPTER FOUR
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CHAPTER FOUR

Subdivision algorithms

4.1 Introduction:

This thesis reviews the modeling of subdivision surfaces, although the
theories behind subdivision surface schemes have been around for more
than 20 years, only recently have they begun to get full attention.

For modeling surfaces such as the ones used in geometric modeling,
there exist many good reasons to employ the subdivision paradigm.
Subdivision schemes use simple rules to generate high-quality surfaces
from coarse polygonal models.

Unlike most competing methods for generating surfaces, subdivision
allows surfaces of arbitrary topology to be created using one single
consistent paradigm. There is no need to stitch together different surface
parts. This makes surface modeling much easier, as there is no fear of
breaking the borders where patches are stitched together.

The most important implication for using subdivision algorithm is to
vary the density of Control points over the surface. This permits the
creation of small details and bodily limbs without the obligation to add
numerous control points. Also important for subdivision surfaces is its
extensive mathematical background, with important links to figure out
multi-resolution analysis, which have proven their usefulness in many
scientific fields. The divide-and-conquer approach, furthermore, allows for
many applications in the field of simulating physical processes .

Subdivision is a technique in computer aided geometric design for
approximating a smooth surface by a sequence of increasingly faceted
polyhedron. Subdivision schemes have several attributes that have
motivated: The input that a designer or artist provides to the algorithm,
usually a coarse mesh, is manageable in size and the subdivision iteration
on the mesh, determined by a simple set of affine combinations, and

typically results in a smooth surface 1.
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4.2 Curves Subdivision:

This chapter explains the concept of subdivision curves. Studying curve
properties usually is much simpler than that of surfaces, making it easier to
gain insights that later can be generalized to subdivision surfaces.
Moreover, many subdivision surfaces schemes are directly or indirectly
based on subdivision curve schemes "4,
Subdivision methods for curve generation are based upon a procedure
which successively refines a control polygon into a sequence of control
polygons that is in the limit, or converges to a curve. The curves are
commonly called subdivision curves as the refinement methods are based
upon the binary subdivision of uniform B-spline curves by Chaitin’s
method, or subdivision for Bezier curve %,
4.2.1 Subdivision and Refinement Uniform B-spline Curve:

For the Quadratic Uniform B-Spline Curve k=3, the equation for this
curve with the matrix notation is calculated in chapter three in equation

(3.34) and it could be rewritten in another form as shown in equation(4.1):

1 -2 1p,

p(u)Z%[l u ul]l-2 2 0llpey | e, 4.1)
1 1 0| Pir
Fork=0,1,.......,n-2,and 0 <t<1,and where
1 =2 1
M quise sy :% _2 9 ol e (4.2)
1 1 0

The matrix M in equation (4.2), when multiplied by [I u u”] defines
the quadratic uniform B-spline blending functions 32,
Splitting and Refinement for the Quadratic Uniform B-Spline Curve

The binary subdivision of a quadratic uniform B-spline curve p(u) is
defined by the control polygon {p,, pi, p.} which is illustrated in Figure

(4.1), containing only three points, and then this is extended to control

polygons containing larger numbers of points.
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B0, B-Spline curve
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Figure (4.1) Quadratic uniform B-spline curve (three control points) 2]

A binary subdivision of the curve has been performed, by applying one of

two splitting matrices in equations (4.4) and (4.5)

1 0 0
SL — M—l O 1/2 O M ..................... (43)
0 0 1/4
| 31 00 ] (4.4)
Su=g[1 3 0
0 3 0 ws)
moso .
Sk=,]0 31
0 1 3

to the control polygon. When applied to the control polygon S, gives the
first half of the curve, and Sy gives the second half. As it turns out, several

of the control points for the two subdivided components are the same.

These matrices have been combined to create a (4 x 3) matrix in equation

(4.6).
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0

o o _lrosoof (4.6)
(Qudric B—spline) 4 0 3 1
1 3

0

And it is applied to a control polygon in equation (4.7):
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And the refined curve has control points that are positioned as in the
following illustration in Figure (4.2) i.e. at 1/4 and 3/4 along each of the

lines of the control polygon. These are the same points as are developed in

Chaitian's method &2,

B0

B-Spine curve after first subdnside stage for contrel poinis.

== Carirol points after first subcdivide stage
=== |rutial control points.

e

60"

b = el o

L e D Hemis

[= L5

Figure (4.2) The first subdivides stage for the control points to
Uniform B-spline Curve 2]

The general procedure is to give a control polygon; it has been generated
by refinement of this set of points by constructing new points along each
edge of the original polygon at a distance of 1/4 and 3/4 between the
endpoints of the edge. The general idea behind subdivision curves is to

assemble these points into a new control polygon which can then be used as
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input to another refinement operation, generating a new set of points and

another control polygon, and then this process continues until a refinement

is reached that accurately represents the curve to a desired resolution 32

For the cubic Uniform B-spline Curve k=4, the equation for this curve with
the matrix notation is calculated in chapter three in equation (3.35) and it

could be rewritten in another form in equation (4.8):

1 4 1 01| p,
-3 0 3 0
p(u):l[l u ou? ul] | TR RN (4.8)
6 3 -6 3 01| Prun
-1 3 -3 1| Prss
Fork=0,1,.......,n-3,and 0 <t<I,and where
1 4 1 0]
1(-3 0 3 0 e ———— (4.9)
\Y ==
(cubic B—spline) 613 —6 3 0
-1 3 -3 1]

The matrix M which is shown in equation (4.9), when multiplied by

[ u u? u’] defines the cubic uniform B-spline blending functions.

Splitting and Refinement for the cubic Uniform B-Spline Curve

The binary subdivision of a cubic uniform B-spline curve p(u) is

defined by the control polygon {po, pi, p2, p3}, containing only three points,
and then this is extended to control polygons containing larger numbers of
points. Let us consider the new control point in Figure (4.2) is the initial
control point for the cubic uniform B-spline curve.

And the splitting matrix matrices can be calculated as shown in equations
(4.10), (4.11) B%.

To gain more experience with this approach, three further examples of

Chaitian (quadratic B-spline) subdivision are offered "1,
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4 4 0 0
1L 6 1 0| e, (4.10)
S, =—
810 4 4 0
0 1 6 1]
1 6 1 0]
1o 4 4 ol 4.11)
Sy =—
810 1 6 1
0 0 4 4]

A binary subdivision of the curve is performed, by applying one of two
splitting matrix S; and Sy to control polygon. (When applied to the control
polygon S, gives the first half of the curve, andS; gives the second half.)

As it turns out, several of the control points for the two subdivided
components are the same. Thus, these matrices it have been combined,

creating a (5 x 4) matrix as shown in equation (4.12).

4 4 0 0]
1 6 1 0
..................... 4.12)
S (Cubic B-spline) = < 0 4 4
0 1 6 1
0 0 4 4]

And the new control point for the subdivide polygon is calculated in

equation (4.13).

] [4 4 0 0
P, 1 6 1 of %
ol 4 a4 ol Il (4.13)
'8 P,
P, 0 1 6 1|,
3
] |0 0 4 4]

This generates a new control polygon which serves as the refinement of
the original. The five control points of this new control polygon specify the
two subdivision halves of the curve-and therefore specify the curve itself,

This is illustrated in Figure (4.3).
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—— Conlied poinls after firsl subdvide slage

B-Spling curve after secend subdwide stage for coninol points.
50.. -+ = Initial cantrod paints
G Controd points after second subdivide stage.

B0 e

Figure (4.3) The Second subdivides stage for the control points to Uniform B-spline
[30
Curve

In the case of the quadratic curve, one is able to state exactly a single
procedure for the points of the refinement. In this case, it is not so easy.
However, if one examines the rows of the (5 X 4) matrix used in the
refinement, it is been seen that they have two distinct forms. This motivates
us to classify the points of the refinement as vertex and edge points; this
classification makes the description of the refinement process quite

straightforward [s01,

For the Quartic Uniform B-spline Curve k=5, the equation for this curve
with the matrix notation is calculated in chapter three in equation (3.44)

and it could be rewritten in another form as shown in equation (4.14):
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1 -4 5 0 0][p,
—4 12 -8 0 0| puy
wout] 6 =6 9 0 0 p, | (4.14)
—4 —12 =60 1 0| p..s
I 1 750 1] pey]

1 2
uw=—-I[ u u
p(u) 24[

Fork =0,1,........,n-4,and0< t< 1,and where
1 -4 5 0 0
o 4 12 -8 0 0 @.15)
M ucen i =6 —6 9 0 0 e ee——— :
24
-4 —-12 =601 0
1 1 75 0 1
And the splitting matrix for the Quartic B-spline curve:
is illustrated in equation (4.16):
5 10 1 0 0]
1 10 5 0 0 416
. o s 10 ol (4.16)
(quartic B—spline) — 1610 1 10 5 0
0O 0 5 10 1
0 0 1 10 5

So, the new control points after making,; the third iteration for subdivision is
the Quartic Uniform B-spline curve defined by equation (4.17)which is
defined by Pascal triangle..

Py 5 10 1

5 0 0l
P/ 1 10 5 0 0 P°
1 1
P L]0 s 00 (4.17)
PI| 16[0 110 5 0,
P! o 0 5 10 1 P3
L™ 4
p| L0 0 1 10 5]

A new control polygon is generated which serves as the refinement of
the original. The six control points of this new control polygon specify the
two subdivision halves of the curve-and therefore specify the curve itself as

shown in Figure (4.4).
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0 controd points
=& control points aftar third subdivision stage for gudratic Uniform B-spéne curve.

0.

25,

20

15

Z-axis

. P1 %y

il i Pg P4
605
B0 0
Y-axis 59.5":' N o TR
59} "-_54} H-avis

Figure (4.4) The Third subdivides stage for the control points to quadrtic Uniform
B-spline curve.

For the Quartic Uniform B-spline Curve k=6, the equation for this curve

1s written as shown in equation (4.18).

Pk

Px+1

p(u):L[l v our W out WM e (4.18)
24 Pk+3

Pk+4

_pk+5_
Fork=0,1,......,n-5,and 0 <t<1, and where

And the splitting matrix for the Quartic B-spline curve:

is illustrated in equation (4.19) which is defined by Pascal triangle.

6 20 6 0 0 0
1 15 15 1 0 0
0 6 20 6 0 0
S (quntc B_spline ) = 312 0 1 5 15 : o | (4.19)
0 6 20 6 0
0 1 15 15 1
0 0 6 20 6]
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So, the new control points after the fourth iteration for subdivision for the

Quintic Uniform B-spline curve are defined by Pascal triangle and by the

following equation

1
Py 6 20
1
P, 1 15
P, 0 6
P, T
32
p! 0 0
p! 0 0

6 0 0 0l -

PO
15 1 0 0

Pl
20 6 0 0 p
15 15 1 0 20 (420)

P3
6 20 6 0

P,
1 15 15 1

P5
0 6 20 6 |- -

Anew control polygon is generated which serves as the refinement of the

original. The seven control points of this new control polygon specify the

two subdivision halves of the curve-and therefore specify the curve itself as

shown in Figure (4.5).

.

Infial control paints.

cantrol points after the fourth subdivision stage for qudratic Uniform B-spline curve

294

20

15
rE‘1'&]
Py ,
5 P, ,_..__-afPS
' G SRl S
2 P3 4
B1
48
- 3
603 .15
Eﬂ‘.. - y '2':'
=25
¥-axis T i
595 < " Keavis
i 35
55 .40

Figure (4.5) The Fourth subdivides stage for the control points to quintic Uniform

B-spline Curve.
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4.2.2 Subdivision and Refinement of Bezier Curve:

The Bezier curve representation is one that is utilized most frequently in
computer graphics and geometric modeling. The curve is defined
geometrically, which means that the parameters have geometric meaning -
they are just points in three-dimensional space. It was developed by two
competing European engineers in the late 1960s in an attempt to draw
automotive components 24,

Refinement for the Cubic Bezier Curve:

A cubic Bezier patch has a useful representation when written in matrix
form. This form allows us to specify many operations with Bezier patches
as matrix operations which can be performed quickly on computer systems
optimized for geometry operations with matrices.

This is an unusual representation for many entrepreneurs as it is not
frequently shown in basic books. So if you have not seen this before it is
suggested that you begin with the section on matrix representations for
Bezier curves in which the equations are simpler and easier to
understand %,

The matrix formulation for cubic Bezier curve which is introduced in
chapter three in equation (3.12) builds the foundation for our refinement

. . 34
curve and is rewritten as [ ].

1 0 0 0] |Pe
2 31-3 3 0 0| |Py
u)=[1 u u u- |l o T s 4.21
p(u) =1 157 26 3 o|lp, (4.21)
-1 3 -3 1 Ps

And the refinement process for Bezier curve is illustrated as follows B

1. When divide the (u) direction from [0-1/2],(as illustrated in
equations (4.22) and (4.23)):
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1 0 0 0](Pe
u u u 2 usz. (=3 3 0 0P (4.22)
=1 = - Bt S T e N e PP .
Q)= = ) | P,
-1 3 =3 1] |p,
1 0 0 0 |
0 % o o[t 0 0 o0]|Pe
pw= u u? u3] . -3 3 0 0 (4.23)
0 0 - 0|3 -6 3 0lp,
-1 -3 1
0 0 0 ! ’3
L 8
So, the left splitting matrix is shown in equation (4.24).
1 0 0 0 |
0 1 0 0
2
S, (cubicBeziercurve) =M™ 1 M e (4.24)
0 O — 0
4
0 O 0 1
L 8]
Itcanbe rewrittenas:
10 0 0]
1 1
- - 0 0
22 (4.25)
- Sp_(cubicBeziercurve) = l l l 0
4 2 4
r 3 31
| 8 8 8 8.
2. When you divide the (u) direction from [1/2-1]:
the right splitting matrix is shown in equation (4.26):
133 ]
8 8 8
o L 1 1
S, (cubic Bezier curve) = 4 2 4l (4.26)
0 0 1 0
2
o 0 0 1
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The Bezier curve before using the splitting matrixes is shown in

Figure (4.6).

6

Y-anlls

Figure (4.6) Bezier curve before using the splitting matrixes to subdivide the
control points.

The matrix from the equation (4.25) has been used and multiplied with the
initial control points as shown in equation (4.21),so the result is shown in

equation (4.27) and illustrated in Figure (4.7).
P, =S,P (4.27)
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(4.7) Bezier curve after used the left splitting matrixes to subdivide the control
points.

The matrix from the equation (4.26) has been used and multiplied with the
initial control points as shown in equation (4.21),the result is shown in

equation (4.28) and illustrated in Figure (4.8) 331,

Pr=S;p (4.28)
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8o
"

o5 s
]

Y-as

Figure (4.8) Bezier curve after using the right splitting matrixes to subdivide
the control points.

When both splitting matrix are used and multiplied with initial control

points the result is shown in Figure (4.9).

60
iy a0
&0 _ s - o

s B - B _2(-}
e -G s

Figure (4.9) Bezier curve after using both (right and left) splitting matrixes to
subdivide the control points.
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4.3 Uniform B-spline Surface Refinement:

Recursive subdivision is the process of repeatedly refining an initial
control polygon P, in order to produce a sequence of increasingly more
refined polygons Py, Py, P,, P;, ... hence approaching a limit polygon,
actually a curve 351,

Subdivision surfaces are based upon the binary subdivision of the
uniform B-spline surface. In general, they are defined by initial polygonal
mesh, along with a subdivision (or refinement) operation which, given
a polygonal mesh, will generate a new mesh that has a greater number of
polygonal elements, and is hopefully “closer” to some resulting surface. By
repetitively applying the subdivision procedure to the initial mesh,
a sequence of meshes, has been generated that (hopefully) converges to
a resulting surface.

As it turns out, this is a well known process when the mesh has a
“rectangular” structure and the subdivision procedure is an extension of
binary subdivision for uniform B-spline surfaces .

The Matrix Equation for the Quadratic Uniform B-spline Surface:

The equation for this surface can be calculated from the general equation
for Uniform B-spline surface in chapter three equation (3.45).So the
uniform B-spline surface for K=3 is shown in equation (4.29).

1

Pluw)=[l u u’]MpM'|lw

2
w

And polygon for this surface is illustrated in Figure (4.10) where
M is 3 x 3 matrixes defined by equation (4.30) and (p) is the initial control
points shown in equation (4.31).

1 -2 1
l _2 2 O .............. (4.30)

(Uniform quadratic B-spline) = o)
| 1 0

M
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Po.o Po. Po2
p — p170 pl’l p1’2 oooooooooooooo
P2 P2, P2

The matrix M niform quadratic B-spliey defines the quadratic Uniform B-spline

1

blending functions when multiplied by | w  |F°,

110

55

80 .
16

1 0

Figure (4.10): Initial control polygon for the quadratic Uniform B-spline

Subdividing the Quadratic Uniform B-spline Surface:

This patch can be subdivided into four sub patches, which are generated
from 16 unique sub-control points. It has been focused on the subdivision
scheme for only one of the four the sub patch corresponding to
[0 <u, w < 1/2], as the others will follow by symmetry. The Figure (4.11)
illustrates the 16 points produced by subdividing into four sub patches. The
initial sub patch that is considered below has been outlined. It should be
noted that the four “interior” control points are utilized by each of the four

sub patch components of the subdivision.
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To define new surface P'(u,w), it should be substituted into the equation

(4.32) and it is yields

P'(u,w) = p(%%)

.............. (4.32)
1
u,» T w
=1 ¥ & pem | ¥
[ (2) ] 5
MAY
5
r N r a7
10 0 1o o,
“fowwtlo L oojmemtio L oo |w
2 2 X
w
o o0 L o o0 <
i 4 I 4.
r . — AT
10 0 10 0 |
[ w Mo % 0 [MPM | 0 % 0| M™)™™"| w
2
! ! w
0 0 - 0 0 -
i 4] i 4]
- - - 4T
10 0 10 0 1
[ou w?M{ Mo % 0 M [P MT|0 % 0| M™HT M| w
2
1 1 w
0 o0 - 0 0 -
i 4] i 4]
- - - - T
10 0 10 0 1
SR VBRI % 0 [M |P| M[0 % 0 M7y | MT| w
2
1 ! w
0 0 - 0 o0 -
i 4. i 4]
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1
P'(u,W):[l u uZ]MP'MT w
w2
where P'=SPS’T  and
1 0 0
s=M~lo 1 0 IM e (4.33)
2
0 0 l
L 4 ]

From this process, the surface P'(u,w) in equation (4.34) can be written as.

1

Puyw)=[1 u u?MSPS™T| w | e (4.34)

2
w

For (3 x 3) control point array (S) .this implies that P'(u, w)is a uniform

quadratic B-spline patch. The matrix (S) is typically called the "Splitting

matrix", and is given by (4.33), and is shown in equation (4.35):

2 -1 oft o0 0 1 1 0
S:% 2 1 0 O 1/2 O % _2 2 0 .............. (435)
2 3 4]0 0 /4|71 -2 1
3 1 0
1
=1 3 0
4
0 3 1

And so the control point mesh P, corresponding to the subdivided patch

is related to the original control points mesh by the equation (4.36)
PIoSPST (4.36)

By carrying out the algebra, it has the (P") given the equation (3.38).
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. 3.1 0 -po,o Po. po,z-l 31 ol
Pr=Zl 3 0py  Pu  Pafyll 3 0
0 Upse  Pay Pan | 1O 3 1
1 Tpoo +Pio 3Py, + Do 3y +pa][3 1 0 .
= 16| Poo +3pi, Doy +3P1, Poa+3p, |1 3 0f e .
3Pio + P20 3P, + P2 3p,+p., [0 3 1
Poo  Posr  Poz
e dowe | (4.38)
pz,o P2, P2>

So, the refinement Quadratic Uniform B-spline surface is shown in

Figure (4.11).

110

105

Po,

_..‘2

Figure (4.11): Initial control polygon for the quadratic Uniform B-spline surface

and the subdivide polygon whenu' = % and w'=—.
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where the P/, from the equation (4.37) is rewritten as

, 1

Poo = E(?’(?’po,o + pl,O) + (3po,1 +Py ) \
, 1

Po; = E(Bpo,o + pl,O) + 3(3p0,1 + P, )

, 1
Poo = E(3(3p0,1 + pl,l) + (3130,2 +Pis )

Plo == (3(ay +3010)+ (o +3p1,))
Py, = %((3p&0 +3p,) +3(3p,, +3p1,)) > ........ (4.39)
Pla = BP0y +301)+ (P +3p,2)
Pl = (30010 +Ps0) + Oy, +92,)

, 1
Py = E((?’pho +P20)+33p,,; +D,)))

, 1
P, =g(3(3p1,1 +p2,1)+ (3131,2 +P,, ) j

These equations can be looked at in two ways:

1. Each of these points P;; utilizes the four points on a certain face of
the rectangular mesh, and calculates a new point by weighing the
four points in the ratio of 9-3-3-1. Thus, this algorithm can be
specified by using subdivision masks, which specify the ratios of the
points on a face to generate the new points. In this case, the

subdivision masks are as follows

Ll e (7
ot — ]
D) —
[
o e
D e 3
et —
Ll e (7

Figure (4.12) Subdivision masks [se1,



CHAPTER FOUR Subdivision algorithms 67
2. Each of these equations is built from weighing the points on an edge

in the ratio of 3-1, and then weighing the resulting points in the ratio
3-1. These are exactly the ratios of Chaitin’s curve and so this
method can be looked upon as an extension of Chaitin’s curve to

surfaces ¢,

Generating the Refinement Procedure

To generate the subdivision surface, one has to consider all 16 of the
possible points generated through the binary subdivision of the quadratic
patch. It is easily seen that each of these points can be generated through
considering other subdivisions of the patch P (u, w) and can be defined by

the same subdivision masks °°.

The Matrix Equation for a Cubic Uniform B-spline Surface

In the same method for the refinement for quadratic B-spline surface, is
the refinement for cubic B-spline surface. Catmull and Clark believed that
study of the cubic case would lead to a better subdivision surface
generation scheme.

The equation for this surface can be calculated from the general equation
for Uniform B-spline surface in chapter three equation (3.45),s0 the Cubic

Uniform B-spline surface for K=4 is written in equation (4.40) below.

—

P(u,w)=[1 u u> u']MpM’

2

3

£ £ =

And polygon for this surface is illustrated in Figure (4.13) where M is 4 x 4
matrix defined by equation (4.41) and (p) is the initial control polygons
defined by equation (4.42).
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T 4 1 0]

11=3 o0 3 ol (4.41)
M(CubicUniformB—spline) = g 3 _6 3 0
-1 3 -3 1
Poo Po Pox  Pos]
I e (4.42)

P20 P2 P2s P2s
Pso Ps; P32 Ps;

The matrix M defines the quadratic Uniform B-spline blending functions

—_—

when multiplied by

2

£ £ =

{17 —
T
100-....,.. |
100,
100 .
0. e
100 ..
-
1004, : g o el

L-axis

B e
N 5 : 15 X-axis

Figure (4.13) Initial control polygon for the cubic Uniform B-spline surface Lsel,
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Subdividing the cubic B-spline Surface:

The cubic uniform B-spline patch can be subdivided into four sub
patches, which can be generated from 25 unique sub-control points. It has
been focused on the subdivision scheme for only one of the four (the sub
patch corresponding to [0 < u, w < 1/2] as the others will follow by
symmetry). Figure (4.9) illustrates the 16 points produced by subdividing
into four sub patches. It should be noted that the nine “interior” control
points are utilized by each of the four sub patch components of the
subdivision.

This sub patch can be generated by reparameterizing the surface by the

variables u’" and w' where u'=u/2 and w'=w/2 substituting

these into the equation (4.40); one obtains the subdivision polygon and

refinement the cubic B-spline surface which are shown in equation (4.43)

and illustrated in Figure (4.14) o1,
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P'(u,w) = p(E ,E) ............... (4.43)
2’2
S
w
=1 = &7 &)’MPM ¥
2 2 2 (2
2
W3
}2)_
1 0 0 0] 1 0o o o]
o L 0 o o L o ofl!
. 2 2 W
= [1 uu 1 MPM' 1 5
10 0 = 0 0 0 - o0flw
4 4 .
1 1| LV
0o 0 0 - 0o 0 0 -
i 8. . 8
1T 0 0 0] 1T o o o]
o L o o o L o o 1
2 3]M 1 2 T 2 WA qr| W
=1 uu u M MPM M )M
0 0 1 0 0 0 1 0 M) w?
4 4 .
] 1 w
0o 0 0 - 0o 0 0 -
i 8] i 8]
1 0 0 0] o 0o ol
o L 0 o L
| M| 2
=1 u v MM M [Pl MT MHT MT
0o o0 L o o L o (M)
4 4
o 0o o | o o 1
i 8] . 8]
T 0 0 0] o 0o ol
o L o0 o LI
2 3]1\/[ 1 2 2 1
=l uu VMM M [P M M) | MT
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where P’=SPST™ and . (4.44)
1 0 0 0]
0 % 0 0
S=M" 1 M e (445)
0 0O — 0
4
0 0 0 l
L 8

From this process, the surface P'(u,w) can be written as

—_

P'(u,w)=[1 u u*> u']M p M’

2

£ £ =

3

For a (4 x 4) control point array p'this implies that P’'(u,w)is a uniform
cubic B-spline patch. The matrix S is typically called the “splitting matrix”,
and is straightforward to calculate from equation (4.45), so it is given by
equation (4.47) 1.

4 4 0
1
4

6

0
0
0
1_

1 6
80 4
0 1
By carrying out the algebra, the new polygon array p’ has been calculated

from equation (4.44) and rewritten in the equation (4.48).

4 4 0 0Py  Po P Pos|[4 4 0 0
p U161 0P Py P Pl 6 1 0|.....(448)
80 4 4 0 Do P, P,  Pas |8 0 4 4 0
I 6 1lp, py  Pu P 1 6 1
_4p0,0 +4p,, 4p,, +4p,, 4p,, +4p,, 4p, 5 +4p,; | 4 4 0
_1Pop TP tPo  PoyHOPL+Pay Poa tOPL FPay Pos tOPL Py (11T 6 ]
8 4p,, +4p,, 4p,, +4p,, 4p,, +p,, P +6p,;+ps; 8]0 4 4
|Pio+0D20+Dso Py +6D,, +D5; Py +6D,, +P5, Py 6D, +Ds; 6
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Each of these points can be classified into three categories — face points,

edge points and vertex points — depending on each point's relationship to
the original control point mesh (see Appendix B). The points

p'070 , p{),z ,p'270 ,and p'z,2 are shown in Figure (4.14) [20]

100 -
100-

100 -

Z-axis

100 -

100 - P30
W e !

107

Y-axis ST 10

Figure (4.14): Initial control polygon for the cubic Uniform B-spline surface and the splitting

control points (control polygon) with subdivide the cubic Uniform B-spline surface o,

To explain the method, the great new polygon point are illustrated by

equation (4.49).
...... (4.49)
, Q+2R+S
Pi=

where Q is the average of the face points of the faces adjacent to the
vertex point (see equation (4.50), R is the average of the midpoints of the
edges adjacent to the vertex point (see equation (4.51) and S is the
corresponding vertex from the original mesh (see equation (4.52).

For example, if the pointP/; is considered, then

e (4.50)
:F0,1+F0,2+F0,3+F0,4
4
P.,+P P.+P P.+P P,,+P
0,2 1,2 + 1,1 1,2 + 1,3 1,2 + 2,2 1,2
R=— 2 2 2 2 e (4.51)

4
S=P, e (4.52)
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All sixteen points of the subdivision have now been characterized in

terms of face points, edge points and vertex points, and a geometric method
has been developed to calculate these points o1,
Extending This Subdivision Procedure to the Entire Patch

The process generated from these rules actually extends to arbitrary
rectangular meshes. In this case, it has been known that this represents yet
another subdivision and that eventually, if it keeps refining, this “limit
mesh” will converge to the original uniform B-spline surface.

Thus, this process gives us a sequence of meshes, each of which is

a refinement of the mesh directly above, and which converges to the
surface in the limit. In the same time the following rules have been
reviewed to generate the points for the refinement of the surface:

1. For each face in the original mesh, generate the new face points
which are the average of all the original points defining the face.

2. For each internal edge of the original mesh (i.e. an edge not on the
boundary), generate the new edge points — which are calculated as
the average of four points: the two points which define the edge, and
the two new face points for the faces that are adjacent to the edge.

3. For each internal vertex of the original mesh (i.e. a vertex not on the
boundary of the mesh), generate the new vertex points — which are
calculated as the average of Q, 2R and S, where Q is the average of
the new face points of all faces adjacent to the original vertex point,
R is the average of the midpoints of all original edges incident on the
original vertex point, and S is the original vertex point %,

To implement program to build refinement for Uniform B-spline surface

needs to drawing the block diagram which 1s shown in Figure (4.15) and

explaining the main steps of the program while the detailed explanation of

the proposed program is given in the flowchart shown in Figure (4.16).
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Start

Input
the control points coordinate
(Xis Yis Zi)

A 4
Input
the matrix form (M) for uniform
B-spline surface with
(K) value.

l

Calculate
the left splitting matrix (Sp).

\4

Calculate
the Right splitting matrix (Sg).

A 4

Calculate
the final splitting matrix (S).

A 4

Calculate
P, (W, w),p; (u,w),p,; (u,w) from equation (3.46)
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1

Calculate the subdivision polygon
P/ (u,w)=S*P_(u,w)*S"
Pli(u,w) =S*P(u,w)* ST
P! (u,w)=S*P_(u,w)*S’

l

Output
Refined Uniform B-spline
surface with (x{, yi', z")

A 4

End

Figure (4.15): Block diagram of the proposed program depending on refinement
Uniform B-spline technique.

Input
the control points coordinates of surface
vector (n X m)

A 4
Input

the matrix form (M) and (k)
value.

A 4
Input
the Increment value (Au, Aw)
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76

2

\4

w=0

\ 4

Calculate
the final splitting matrix (S).

v

Calculate
the p,(u,w),p,;(u,w),p,(u,w) from equation (3.46)

A4

Calculate the subdivision polygon
P/ (u,w)=S*P_(u,w)*S"
P! (u,w)=S*P(u,w)*S"
P/ (u,w)=S*P_(u,w)*S"
v

wW=w+Aw

Yes

Output
Refined Uniform B-spline surface with (x;,

yi', Zi')
Presentation

Figure (4.16): Flowchart of the proposed program depending on refinement Uniform
B-spline Surfaces.
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4.4 Bezier Surface Refinement:

A Bezier patch has a useful representation when written in a matrix
form. This form allows us to specify many operations with Bezier patches
as matrix operations which can be performed quickly on computer systems
optimized for geometry operations with matrices [241,

The Matrix Formulation for a Cubic Bezier Surface:

The equation for this surface can be calculated from the general equation

for Cubic Bezier surface in chapter three equation (3.24), so the cubic

Bezier surface can be rewritten as equation (4.53) and shown in

Figure (4.17):

3 3
P(u,w)=> D P B s(u)B s(w) e (4.53)
j=0 i=0
3
= pi,jBi,3(u):|Bj,3(W)
j=0i=0
1 0 || Po.j
3 -3 0 0flp
=20 u o utow’] HB S (w)
j=0 3 -6 3 0 pz’J
_1 —3 1 _p3,J
1 0 0 o0][Pw Py P P |1 0 o o[t
o333 0 O[|Pp Py P P3||-3 3 0 0w
=1 u u u]
3 -6 3 0|lpy Py P Py ||3 -6 3 0]|W
-3 -3 l_pz,o Psi P2 Pz | -3 =3 1w

Patch Subdivision Using the Matrix Forms:
When the patch at the point u = 1/2 is subdivided. it reparameterized the
matrix equation above (by substituting u/2 for u) is reparametrized to cover

only the first half of the patch, and simplified to obtain the equation (4.54).
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where the matrix S is defined before in equation (4.55), so the equation
result is defined as:

1

0

0L = 1o —

0

O

0w p|—

0

0

8

and is identical to the left subdivision matrix for the curve case. So in

particular, the sub patch P (u/2) is again Bezier patch and the quantity is
defined by the equation (4.56).

P'(u,w) =

—

O = A= |~

0
1
2
1
2
3

8

0

0]

P'(u,w) forms the new polygon points of this patch illustrated in Figure

(4.18).
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Calculation of the Second Half of the Patch

In the same way, the subdivision matrix for the second half of the patch

has been obtained. First the original surface is reparameterized, and then

simplified to obtain the equation (5.57).

Poo  Poi Po2  Po3 1
1 u 1 u 1 u 1 u Po P P> Pz w
P(+,w)={1 G+ G+ (+)3}M M 2| @57
2 2 2 2 2 2 2 2 Po  Po Py D3
Pso P P2 Ps3 _V‘;'
111
2 4 8| - -
1 1 3 Poo  Poy Po2  Pos 1
o -~ - °
W
0w 2 u3] 2 2 8 Mpl,O Pi P Pi3 M
0 0 1 ;’ Poo P P2 Po3 W
4 ? [P0 P P2 Pi3 | _W?'_
0O 0 0 -
L 8
Poo  Pox Po2  Po3 1]
W
0w uS]MSR Po  Pu P2 Pis M-
Poo P Pop Po3 W
[P0 P P2 Ps3 | _W3_
where  the matrix Sr is defined in equation (4.58).
T .
2 4 8
o L L 3
g - 2 2 8| (4.58)
R 1 3
0 0 — —
4 8
0 0 0 L
L 8

which is identical to the right subdivision matrix in the curve case and
a matrix has been obtained that can be applied to a set of control points to
produce the control points for the second half of the patch as illustrated in
Figure (4.19), and figures out the splitting control polygon for the left and
the right sides to the cubic Bezier surface in the Figure (4.20).
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Z-axis

Figure (4.17) Initial control polygon for the cubic Bezier surface.

100,
95,

90,

Z-3%Is

o X-axis

Figure (4.18) Initial control polygon for the cubic Bezier surface, and the splitting the
left control polygon when used S; matrix.
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Z-mis

X-andis

Figure (4.19) Initial control polygon for the cubic Bezier surface, and the splitting the
right control polygon when used Sg matrix.

Z-ails

A-axis
Figure (4.20) Initial control polygon for the cubic Bezier surface, and the splitting the
right and left control polygon when used S; and Sk matrix.

Implement program to build refinement for Bezier surface needs drawing

the block diagram which is shown in Figure (4.21) and explaining the main
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steps of the program while the detailed explanation of the proposed

program has been given in the flowchart t shown in Figure (4.22).

Input
the Control points coordinate
(Xi» Yi> Zi)

Input
the matrix form (M) for Bezier
surface (n) value.

l

Calculate
the left splitting matrix (Sp).

\4

Calculate
the Right splitting matrix (Sg).

l

Calculate
the final splitting matrix (S).

A 4

Calculate
the p,(u,w),p,;(u,w),p, (u,w) from equation

(3.27)

v

Q
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3

Calculate the subdivision polygon
P/ (u,w)=S*P_(u,w)*S"
Pli(u,w) =S*P(u,w)* ST
P! (u,w)=S*P_(u,w)*S’

l

Output
Refined Bezier surface with

(Xi', Yi', Zi')

A 4

End

Figure (4.21): Block diagram of the proposed program depending on refinement

Bezier technique.

Input
the control points coordinates of surface
vector (n X m)

\ 4

Input
the matrix form (M) and (n) value
for Bezier surface.

A 4
Input
the Increment value (Au, Aw)
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4

\4

w=0

\ 4

Calculate
the final splitting matrix (S).

v

Calculate
the p,(u,w),p,;(u,w),p,(u,w) from equation (3.27)

Calculate the subdivision polygon
P/ (u,w)=S*P_(u,w)*S"
' T
P(u,w)=S*P(u,w)*S
P/ (u,w)=S*P_ (u,w)*S"

v
W=w+AwW
Yes
0<w<l
l No
u=ut+Au
Yes No
0<u<l
Output
Refined Bezier surface with (x;', yi, z")
Presentation

Figure (4.22): Flowchart of the proposed program depending on refinement Bezier
Surfaces.
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4.5 Loop Subdivision Scheme

Charles Loop generalized the subdivision rules of a symmetric quadratic
box-spline over a regular triangulation to include rules to be applied in the
vicinity of extraordinary points. The limit surface is C, continuous
everywhere except at the extraordinary points, where it is only C,. The
extraordinary point at the surface exhibits a continuous tangent plane, as
long as the weighting factors stay between certain limits. Although part of
Loop's motivations were based on intuition, it turned out that the rules that
he considered as optimal still survive today as being the most suited for
stationary triangular subdivision (371,

In Figure (4.23), four consecutive steps of the Loop subdivision scheme

of a triangle are shown. Each time all existing triangles are divided into

four smaller triangles.

A
/ \ VAN AYAVAY ﬁ% oz

Figure (4.23) Four steps in the subdivision of a triangle %,

The mathematics for this method is can be explained briefly by choosing

locations for new vertices as weighted average B of original vertices in

local neighborhood in equations (4.59) and (4.60).

1[5 (3.1 2rY

B—; I a7l I PP (4.59)
i n>3

B= 8311 ............ (4.60)
— n=3
16

n is the vertex of valances in loop scheme, the rules for extraordinary

vertices and boundaries are illustrated in Figure (4.24:a,b)
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Figure (4.24: a, b): Rules for extraordinary vertices and boundaries !,

4.6 The Butterfly Scheme

The structure of the meshes created by the Butterfly algorithm is very
similar to the meshes created by Loop’s scheme. It also creates new points
by splitting the edges into two, followed by a relaxing step. The averaging
masks used are quite different, however. The vertex-points always stay in
their original position, which causes this scheme to be an interpolating one.
The averaging mask for the newly inserted edge-points is depicted in
Figure (4.25) the form of this mask resembles a butterfly, hence the name
of the scheme. The limit surface is differentiable everywhere except at
extraordinary points of valence n = 3 and n >= 8. Although the surface is

tangent plane continuous at extraordinary points of valence n >= §, the
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surface is not regular as it has self-intersections, the algorithm is illustrated

in Figure (4.25) and equation (4.59).

P 3 P4 PS

PE: P'.-' PE

Figure (4.25): Situation around a newly inserted edge point for the interpolator Butterfly

scheme.

And the main formula to determin the new points Q is determined by the

equation (4.61) L.

1
Qza(Pl+P2)+2W(P3+P4)_W(P5+P6+P7+P8) ............ (461)

4.7 Hexagon Subdivision Surface:

In order to search for the most interesting values for the subdivision
weights, the following considerations are regarded. Firstly, the support area
should be small such that every control point exhibits only a local
influence. Therefore, one gets solutions that are restricted to using the
points of the polygon in which the new points are created. Furthermore,
just as in existing schemes, it makes sense to look for a symmetrical
scheme, invariant to the order in which the points are considered and let all
points play an equal role. For the standard mesh (hexagons where every
point has valence 3), these considerations lead to the existence of three
different weights (see Figure 4 .26):

- one for the two points closest to the new point (a),

- another weight for the two points in the middle (b),

- and a third weight for the two furthest points (c).
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Figure (4.26): The position of the new point P is a weighted average of the points of the
surrounding hexagon.

Expressed using these factors, the equation for the new point is then written
in equation (4.62).
P=ap, +ap, +bp, +bp, +cp. +ep, e (4.62)

Another consideration is that for an input configuration of all equal
regular hexagons, the new points should be located such that all newly
created small hexagons are again exactly equally sized. As for each input
hexagon, three new hexagons are created, and the area of the new hexagons
has to be equal to one third of the area of the original ones. To obtain this,
the sides of the hexagons have to be divided by a factor of (1/+/3). Due to
the symmetry of the regular hexagons, this is only possible if the weight is
(c=a-1/3).

For the scheme to be invariant under affine transformations, the sum of
these weights should be equal to one: (2a + 2b + 2¢ = 1). So, together with
the condition on(c), this condition leads to (b = 5/6 - 2a). Putting all this in

a matrix, and getting the subdivision matrix S” it's defined by equation

(4.63) 14:
[ a a 5/6-2a a—1/3 a—1/3 5/6-2a |
5/6-2a a a 5/6—2a a—1/3 a—1/3
G213 5/6-2 a a 5/6—2a a-1/3 | ..(4.63)
a—1/3 a—1/3 5/6—2a a a 5/6-2a
5/6-2a a-1/3 a—1/3 5/6—2a a a
| a 5/6—2a a—1/3 a—1/3 5/6—2a a |
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4.8 Catmull-Clark

The subdivision scheme for cubic B-splines a tensor-product definition.
This approach is nicely defined on regular quadrilateral meshes and can be
executed in two separate passes. First, the curve scheme is executed in one
direction, followed by a second pass in the orthogonal direction. Catmull
and Clark's most important innovation was the extension of the scheme
allowing it to cope with non-regular meshes. In the regular setting, the
mesh consists solely of quadrilaterals and all vertices have a valence of
four, they observed that they could split faces that are not quadrilaterals in
a similar way as the faces that are split in the regular case. Just a point is
added in the center of the face and connected it to the center of every edge.
This ensures that starting from the first subdivision step, all generated faces
are quadrilaterals. Also newly generated points at the centers of the edges
nicely get a valence of four. Only the centers of input faces that were not
quadrilaterals lead to the creation of an extraordinary vertex. This implies
that the number of extraordinary vertices stays constant, namely one for
each extraordinary vertex in the input mesh and one for each face that was

not a quadrilateral; Figure (4.27) illustrates this subdivision algorithm.

Figure (4.27): Subdivision around a central vertex V,, showing surrounding control
points (Qj), edge points (E;) and face points (Fi) 1
An initial vertex Vj 1s surrounded by n edges, leading to n neighbor

vertices Q;. A first step in the subdivision process is to insert so-called face

points F; at the centers of the faces.
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Then, for every edge a so-called edge point E; is calculated as the mean

between the two vertices and the two face points of the faces that make up
the edge.

Finally, the positions of the existing vertices are relaxed by averaging
them with their neighbors in the following way. V; is the position of V

after the first subdivision step and is calculated from the formula (4.64):

Vi =n_2VO+%ZQi +%ZE ........... (4.64)
n n

n

After using these rules for face points, edge points and vertex points,
new faces are formed. First the existing edges are split using the edge
points and the new vertex points, and then new faces are formed by
connecting the edge points to the face points [,
4.9 Doo-Sabin

This scheme, is also based on a tensor product for subdivision curves.
Instead of cubic curves, Doo and Sabin used quadratic curves. This leads to
quite simple rules. Only one type of new point is introduced, at the center
of a quadrilateral formed by an existing vertex, two edge points and the
center of the face. This effectively shrinks the existing faces to half their
original size. In order to close the mesh again, also new faces are put
around the old vertices and edges. This has the visual effect of cutting away
the corners of the polygonal mesh. The mesh obtained is the dual of the
mesh from the Catmull-Clark scheme, interchanging the roles of points and
faces.In Figure (4.28) the Doo-Sabin subdivision process is illustrated for

a polygon with five vertices .

Figure (4.28): Left: An input polygon with surrounding edges. Right: The new faces
created by one subdivision step of the Doo-Sabin algorithm.
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4.10 Chapter Summary

This chapter has focused on the Chaitin's subdivision algorithm, Linear
Algebra, is the mathematical basis for Catmull Clark and Doo-Sabin
subdivision method.

Firstly it explains the curve refinement by Chaitin's algorithm, So it has
been concentrated on Subdivided the Uniform B-spline curve starting from
subdivide the Uniform quadratic B-spline curve to arrive to Quintic
Uniform B-spline curve, because it will be the basis for our practical
principles to generate the profile shape for extrusion process in chapter
five, after that it explains refinement for Bezier curve and it lets cubic
Bezier curve be the case study to explain this method.

Secondly the work continues with Chaitin's algorithm to demonstrate
the Uniform B-spline surface refinement ,and Bezier surface refinement, by
taking Cubic polynomials for both surfaces (Bezier and Uniform B-spline),
and the case study explains subdivision algorithm, then Block diagram, and
Flowchart for Bezier and Uniform B-spline surfaces are built.

Thirdly it givens the guidelines for the more complex subdivision
algorithm (Loop Subdivision Scheme, Butterfly scheme, Hexagon
subdivision surface, Catmull-Clark algorithm, and Doo-Sabin algorithm).
And these subdivisions algorithms are summarized in the table (4.1) Note
that Chaitin's algorithm is omitted in this table because it's implied in

Catmull-Clark , and Doo-Sabian algorithm.

Table (4.1) Classification of the subdivision surface algorithm.

Primitive (face-split) Dual (vertex-split)
Triangles Quadrilaterals Quadrilaterals
Approximating
(not interpolating original Loop Scheme Catmull-Clark Doo Sabian Midedge
vertices)
Interpolating Butterfly Scheme Kobbelt
The original vertices
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CHAPTER FIVE
Testing the Subdivision Algorithm in Production Field

This chapter investigates and evaluates the proposed CAD, CAM, and
theoretical die design profile, there is no doubt that any developed method
or technique that tries to solve any kind of problem should be tested ,In our
case the subdivision algorithm is developed and employed in production
field.

The practical part of this research has been done in these listed points:

1. The die design theory of Constant Ratios of Successive Generalized
Homogeneous Strain Increments (CRHS) was implemented on one
problem as case study (in order to design the optimum die profile),
then a asymptotical die profile was made which was designed via
CRHS, by using two approximation techniques after modifying it by
subdivision algorithm .

The First approximation technique is the quartic Uniform B-spline curve
(with six control points) which is developed from cubic Uniform B-spline
curve after third iteration, and the second is Quintic Uniform B-spine curve
(with seven control points) which is developed from cubic Uniform B-
spline curve after fourth iteration .The reason for developing this
subdivision algorithm is to increase the degree for the curve and get the
control points set on the curve especially after the second iteration, so that
will reduce the chance to get the error for identity. These curves with the
curve result from the CRHS method.

2. Create surfaces from the curves proposed; these surfaces are half die

for direct extrusion die process.

3. Find the mean curvature and the radius of curvature for each case.

4. Find the minimum radius of curvature (to find the optimum tool

radius for finishing process theoretically).
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5.

Find the deviation for each surface proposed above (the deviation
between the surface before exposure by machining process and after
this process).

Find the maximum and the minimum deviation for each surface.
Create toolpath for each surface, which generates the interior data of
the desired surfaces by Matlab (V7.0) software to represent the
desired surface in graphical mode.

Import the toolpath from Matlab (V7.0) software to Surfcam
software as DXF extension (Design Matlab software to make the
converter from Matlab Software to Surfcam Software).

Make simulation by surfcam software to manufacture these surfaces
with the manufacturing parameters which are calculated before (like

the cutter radius).

10.Obtain the G-codes from the surfcam software.

11.Design software to import the G-code result from surfcam program

as NCC file to Matlab program (the reason for this software is to
shifting the zero coordinate to the stock (block) corners or out of the
stock coordinate with defined value, because the surfcam program
fails to do this option) that greatly simplifies the machining process

for the operator.

12.Import the modified NCC file to surfcam software then make

simulation depend on the G-codes modified.

13.Implement the final G-codes result for these three surfaces generated

by Matlab program, on CNC machine (Hermle C30U dynamic,
5-axis AC-kinematics, with specification of linear motor drives
(60.000 m/min), motor spindle 37kw 28.000 rpm) and controlled by
Siemens 840D,and the position error was below 0.002mm This

machine belongs to the Technical University Darmstadt (Germany).
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5.1 Dies Designed According Rational Concepts

In this concept, the design of tool is directly linked with the lessening of
the severity of the operation to ensure the flow lines of the metal are
smooth and do not suffer unnecessary discontinuities. In any forming
process the pattern of the deformation depends either on the order in which
the magnitude of the successive ratios of generalized strain increments
varies along the pass, or on the variation in the strain rate itself. Therefore
if a constant rate of either of these parameters can be maintained
throughout the operation, the likelihood of the incidence of flow
discontinuities will be reduced. The characteristics of the worked material
and the mechanics of the process will dictate which of the two parameters
is likely to be of greater importance in any given case.

The possible basis of tool design can be associated with two modes of flow:

1. Constant Ratios of Successive Generalized Homogeneous Strain

Increments (CRHS).

The geometry of the pass in this concept depends on the variation in the

dimensions of the workpiece and consequently on that of the generalized

homogenous straine,, . The manipulation of this variation affords means of

controlling the flow.
2. The Constancy of the Mean Strain Rate (CMSR)

The concept of constancy of the mean strain rate is defined analytically as

ba=&H=77777 =1 =% = Constant

Where is €the mean strain rate. Since many engineering materials are
susceptible to the effects of the strain rate at both low and elevated
temperatures, the use of strain rate as a basis for tool design could be
potentially advantageous !,

This thesis has focused on (CRHS) concepts to make the die profile for

extrusion process, and build the theoretical side for this thesis.
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5.1.1Constant Ratios of Successive Generalized Homogeneous Strain

Increments (CRHYS)

This concept depends on the following assumption which says "the ideal

geometric shape for the extrusion die :is the geometric shape which was
designed to get the effect for resultant homogenous strain (which is needed
to make forming process) from the total plastic strain ( that means there is
no resultant for non-homogenous strain),and in another words: is the ideal
geometric shape which does not generate any sheared deformed in the
sample formed and that is the main aim for any design to the die forming
process.

So, the CRHS concept depends on the general resultant homogenous
strain for the forming process, for that reason equation (5.1) has been used
to calculate the general homogenous strain, which it is assumed neglects
the value for the elastic strain especially when it is compared with the

plastic strain value.

de, = %[(dax -d ey)2 + (dsy — dsz)2 + (de, — dsx)z]l/2 ... (5.1)

de,, = total homogenous strain

And assume the volume for the material is staying constant before and after

the forming process.

d8x+d8y+d82=0 ................... (5.2)
Or:
g te +e, =0 (5.3)

And substitute equation (5.2) in equation (5.1), then integral it, so the

equation result is (5.4):

1/2
8h=,/§—(8)2(+8§+8§) """""""""" (5.4)

Equation (5.4) is the mathematical expression used to calculate the total

homogenous strain. This expression is used principally in die
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design depending on CRHS concept, and this equation contains three

components for the homogeneous strain:

a. Longitudinal Straine, .

b. Radial Strain €y

c. Circumferential Straine, .

The condition constant homogenous strain rate can be verified by equation
(5.5) B

ol — & e — & —

e M The T o B T, o (5.5)
Shl _8h0 Shz _ghl ghn-1 _Shn-z
where:

€ =is the homogeneous strain at any section (n) for die profile.

S: constant, which determines the rate of deformation.

Three basic rates are adopted for this they are S= 0.8, S =1, and
S =1.2.but in this thesis S=0.8 is value which is used. That means the rate
of deformation is Decelerated (D), and the profile shape result which
appear is the same as that of DCRHS (as shown in Figure (5.1)).

In any specific physical situation, equation (5.4), when integrated can be
represented as logarithmic equation (5.6)
ey, = In(z,). (5.6)

Z. = is a function that reflects the dimensions of the workpiece in section
(n) of the pass (bar with rounded section has been used in the case study). It
is clear that in section 0, which corresponds to the entry to the pass, &, =0
and thereforezZ, =1.

When use the bar with rounded section at the section (n) is used as a

workpiece in deformation area, the value of ¢,,e e, for the bar with

rounded section can be calculated as follows:

_da

de,
A
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where A is the area at any section:

_2nRdAR _2dR (5.8)
X n.R? R
And integration is made for the equation (5.8) along all the profile length:

Rn
€ = .[dsx = 2.In(&J """""""""" (5.9)
n RO R

n

oo de

where

Ro: is the initial radius for the bar which we need to formed it (the entire
for die profile) see figure (5.2).

Rn: is the bar radius at (n) section along all die profile.

&, the Longitudinal Strain at the (n) section along all die profile.

Assume the volume for the material is constant:

g te, +g, =0 (5.10)

For the bar (rounded section):

SEy FEL (5.11)
And that means
€
. SX — —2_8y — Sy - _ Xn  aesassasssasssasass (5.12)
n: n n 2
And substituting equation (5.9) in equation (5.12) gives:
Sy :82 :—In[&j """""""""" (5'13)
n n Rn

And substituting equation (5.13) in equation (5.4) yields:

&, = In(%) ................... (5.14)

n

By make comparison between the equation (5.6) and the equation (5.14):
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R 2
Z,= [R—Oj ; (Z, atthe sectionn). ... (5.15)
n
and Zl — (_OJ (Zl at the Section n:l). ................... (516)
R,
R,
AndC=— (5.17)
R,
R,=CR,

C: is a constant value always (C < 1) and the range for this value is
(0.9-0.99)

So, from equations (5.16) and (5.17)

Ro) (1Y
zlz[R_lj _(CJ ................... (5.18)

And when we substitute the equation (5.6) in equation (5.5) B

In(Z;) —In(Z,) _ S e (5.19)
In(Z,) —In(Z,)
§(n-1) ,(n-2)
Z,=2Z, (5.20)
Z 2
=3 _ Z
ZZ
VA -
L= L ] (5.21)
n-1
23 _ ZSZ+S+1 ................... (522)

"z, = Zs(“ D=2 153y s (5.23)
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— Line of center

T ie—y

Figure (5.1): The geometric shape (for the Forward Extrusion) dies profile designed
by CRHS .

CONTAINER

|
N

A 4

Figure (5.2): The shape for the Die, and the way to divide the Die profile to (n)
sections (for Forward Extrusion), to design the Geometric shape for the
Die by CRHS concepts [©.
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5.2 Curvature Algorithm

The curvature of the surface may be expressed as the rate of change in
the direction of the tangent vector with respect to the arc length. So there
are many different ways to calculate the curvature for the surfaces, which
are widely used in designing and manufacturing free form surfaces.

Let k;and kybe the principal curvatures, then their mean is
H :%(k1 k) (5.24)

H: is called the mean curvature.
Let R; and R, be the radii corresponding to the principal curvatures,
then the multiplicative inverse of the mean curvature H is given by the

multiplicative inverse of the harmonic mean

oif 1 1 Re+R (5.25)
2R, R,) 2RR,

To calculate the curvature in regular patch (let x: U — R?)

y_eG-2fF+gE L (5.26)
2(EG - F?%)

where E, F and G are coefficients of the first fundamental form and e, f and
g are coefficients of the second fundamental form “°1,

The best test for the curvature equation is the sphere shape; the curvature
value should be equated at any radius for circle in this sphere. So, the
logical explanation for the constant color in any radius of circles, and
difference from another radius is the curvature which is equal for the same
radius of circles and different when the radius is different (decrease or

increase the radius) as shown in Figure (5.3).


http://mathworld.wolfram.com/PrincipalCurvatures.html
http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/PrincipalCurvatures.html
http://mathworld.wolfram.com/MultiplicativeInverse.html
http://mathworld.wolfram.com/MultiplicativeInverse.html
http://mathworld.wolfram.com/HarmonicMean.html
http://mathworld.wolfram.com/FundamentalForms.html
http://mathworld.wolfram.com/FundamentalForms.html
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Figure (5.3): The sphere shape which explains the difference in the curvature value
when the circles radius is different and the curvature has constant value
at the same radius value.

5.3 Radius of Curvature

To calculate the radius of curvature for the curves or surfaces, means we
should calculate the radius of curvature for all the surface points.
For the tool with ball tip, we will talk about the sphere tip, given a set of

points; we find the center and radius of a sphere that fits the points best

In n dimension, points xeR" on a sphere with center ce R"and radius

r > Qare characterized by

e (5.27)
Equivalently,
ngici 12 _ZCiZ _ ZXIZ :HXHZ ................... (5.28)

where the summations are over j=1, 2, 3...n. Now, only consider the cases

n=2 and n+3, and given a set of m points
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X = (X5 e x)eR":k=12,..,m}

To obtain the center of the fitting sphere c= (c;...c,), the following system

has been solved for linear equations in the least square sense

c, I
2X7...2x5 1| HX H
e T (5.29)
2x ... 2x M1 )| - meHZ
R

Then, the radius of the sphere is

T (5.30)
r={Rd

If the matrix above does not have maximum rank, we define r =go

: 0
|

-30 -20 40 50

X-axis
Figure (5.4): The radius of curvature for some points on the designed profile.
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5.4 Toolpath Design

A vertical three-axis CNC milling machine is the appropriate system for
machining the surfaces. In order to generate the desired shape, the cutter
must be moved so as to remain tangent to the surface created by the sliding
of the profile curve along the trajectory curve. A tool commonly used for
generating free-form surfaces is a spherical end-milling cutter, which has
the convenient property that the center of its spherical end remains at
a constant distance from the generated surface, while the tool axis
maintains a vertical orientation.

A convenient tool center path, corresponding to one pass in the
machining process, consists of a series of small lines of prescribed length
along the profile's offset, followed by offset motion along the entire length
of the trajectory curve, until the end of the profile curve is reached, see
Figure (5.5) ¥,

trajectory curve

tool - path

start

S
profile cuwe/

Figure (5.5):The tool-paths in XZ-plan (Front View) [42]
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The necessary steps for this motion are generated, using as data input the

following:

¢ the coordinates of the surface defining the profile curve.

e the tool-radius,

e the step size,

e the distance between scallops.

o the federate

The programmed distance between scallops is used to determine when to
switch from motion generation along the profile curve to the motion
generation along the trajectory curve 1°!,
A spherical cutter permits gouge-free machining of nonconvex surfaces if
the cutter radius is less than the minimum concave principal radius of
curvature on the surface obviously ¥, as shown in equation (5.31) [*°I.

Rf < Pmin e
P min : the minimum radius of curvature of the over all surface.

R; : radius of finishing cutter.

The cutter radius and the updated offset distance should be less than the
minimum concave radius of curvature on the profile and the trajectory
curves, respectively. By choosing a tool with a sufficiently small radius, the
program can accommodate the considered surfaces [tool-path].

In fact, given information about cutter deflection, machine tool chatter
and tool breakage will increase the tool life and surface integrity can be
optimized in selecting appropriate cutting conditions. In milling, a lot of
parameters are saved to be considered for any optimization attempt. These
parameters concern the tool (geometry material), the tool path (path
description, path length, and accessibility), and the tool engagement in
workpiece (depths of cut, cutting modes), the kinematics (spindle
frequency, feed velocity) and the lubrication conditions (lubricant type and

flow or no lubrication) 31,



CHAPTER FIVE Testing the Subdivision Algorithm in Production 105
Field
The tool center points are offsets of the tool surface, contact points in the

surface normal directions by the tool radius. Coordinates of the tool tip
points can then be obtained by translating the center points in the tool axis
direction. The uncut region between successive tool cut is usually called

scallop 1%

. Scallops are the main factor which influences machining
quality. Finishing operation process generally requires that the scallop
height does not exceed 0.05millimeters. With a given diameter of ball-end
mill, the distance between two tool paths is computed in terms of the value
of scallop height. For example, in the case of planar ball-end milling (see
Figure (5.6)) the value of stepover can be calculated according to the

formula in equation (5.32) 1.

s=2/Dh-h% (5.32)

s: The value of stepover, D: The diameter of ball mill, and h: Scallop
height .Therefore, using a ball-end mill with given diameter dimension,
produces much higher density of tool paths in convex regions than in
concave regions when making the finish cut. This means that the overall
productivity and material removal rate of ball-end mill finish surface

machining is very low ),

Ball-end mill

Diameter (D)

- !

Vol +S{:allnp (h)

Scallap

Machined surface /\

-._\
— !
Step (s}

|

}
|

‘ |

LInmachined material |
|

|

|

Cultter contact point

Desired surface

(b) Step, scallop and diameter for
ball-end milling
[46]

(a)Ball-end milling

Figure (5.6): Ball-end mill surface machining
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This thesis has used scallop height value exceed 0.05millimeters

(approximately 0.4 millimeters) so that means the process which adopted is
semi finishing process to reduce the milling process time and it is
positively affects on milling process cost.

Most complex shapes fall within categories of 3D it is requiring
movement of three axes in machining process. So to draw the toolpath for
the shape which is shown in Figure (5.7), the toolpath has been designed in
U-direction or in W-direction. Artificially the tool path should be designed
for the longer dimension, but in some special cases (like making some
experiments in laboratory), they need to design the tool path in another
direction for special reasons of research 1, Figure (5.8: a, b) illustrates the

tool path in U and W direction.

118
110 — \\‘TC‘\
W
RN
105 ~ L
Wi,
W \\
100~ W
: 00"
R Y -( Wt

95—

Z-axis

Figure (5.7): Bezier surface n=3, .
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(b)
Figure (5.8: a, b): Three dimension toolpath
a- In U-direction.
b- In w-direction.
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Case study:

Design the extrusion die depending on the theoretical concept (CRHS) and
explain which type of CRHS will result with the information listed below:
R, =225mm;R; =15

L =13mm (Distance from die inlet).
S=038

Depending on the CRHS concept:
To find Z, at the point (n=13), we should use equation (5.15)

, [22.5}2
12 15
Z,=2.25
And the Z; is calculated from the equation (5.23)

Z,=1.18723

And again from the equation (5.15) we calculate R,

R, = lel(/)2

R, =20.65mm

So, we continue in the same calculation to find Z, from equation (5.23).
Z, = Z;).s(z‘lho.s(z‘z)

Z, =1.36195

And to calculate R, from equation (5.15)

22.5

~1.36195Y2
- R, =19.28mm

2

So, we continue in this calculation to find Z, R, at every L (Distance from
Die inlet).
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Table (5.1): Calculate the R, Z, at every L for Forward Extrusion Die Profile by CRHS concept

n | X(mm) Zn Rn(mm)

1 1 Zo 1 Ro 22.5
2 2 71 1.18723 R 20.65
3 3 7> 1.36195 R> 19.28
4 4 Zs 1.52007 Rs 18.249
5 5 Z4 1.65968 R 17.465
6 6 Zs 1.78055 Rs 16.862
7 7 Zs 1.88355 Rs 16.394
8 8 77 1.97023 R~ 16.03
9 9 Zs 2.04243 Rs 15.744
10 10 Zs 2.10209 Ro 15.519
11 11 210 2.15107 R1o 15.341
12 12 an 2.19108 R11 15.2
13| 13 Z12 2.25 R1z 15.089

From this table we find that is

Z,=2.25

R¢: 15.089mm (Final radius for die Profile)

Ln: 13mm (Distance from die inlet)

And n: 13 (number of sections for die profile for forward extrusion

process).

The die profile results from this R mm and L mm is shown in Figure (5.9).

25

20

S~

15 4

10

M—‘

—e— DCRHS method

DIE RADIUS (mm)

5 10
DISTANCE FROM DIE INLET L (mm)

15

Figure (5.9): Design the Geometric shape for the Die profile by CRHS concepts, the
shape result is DCRHS, (for Forward Extrusion).
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From the comparison between the curve result in Figure (5.9) and the

curves in Figure (5.1) is noted that the curve in Figure (5.9) is DCRHS type
and note the die geometry which was designed before in Figure (5.9) see
Figure (5.10).

Figure (5.10) Geometric Die design for Forward Extrusion process depends on
CRHS concepts with Die profile length 13mm.

The curve in Figure (5.9) has been drawn again by using Uniform
B-spline curve with subdivision iterations to get more control points and to
arrive to the same curve geometry by trial and error method, so firstly it is
draw with Quartic Subdivision for Uniform B-spline curve (that means 6
control points plotted on the curve) as shown in Figure (5.11) and the

surface result is shown in Figure (5.12).

<
15 -

—e— Quantic Subdivision
for Uniform B-spline
Cune

*

DIE RADIUS (mm)
[E
o

0 T T
0 5 10 15

DISTANCE FROM DIE INLET (mm)

Figure (5.11): Drawing the Geometric shape for the Die profile which is designed by
CRHS concepts, the shape result is DCRHS, (for Forward Extrusion),
drawing by Quartic Subdivision for Uniform B-spline Curve.
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Figure (5.12) Geometric Die design for Forward Extrusion process depends on
CRHS concepts with Die profile length 13mm drawing by Quartic
Subdivision for Uniform B-spline Curve.

Secondly the same curve in Figure (5.9) is drawn with Quintic
Subdivision for Uniform B-spline curve (that means 7 control points plated
on the curve) as shown in Figure (5.13) and the surface result is shown in
Figure (5.14).

25
= L
E 50 [
0 15 \‘\‘\*- o . —e— Quantic Subdivision
) . .
= for Uniform B-spline
< 10 1 Cunve
(04
W 5
&)

O T T

0 5 10 15

DISTANCE FROM DIE INLET (mm)

Figure (5.13): Drawing the Geometric shape for the Die profile which is designed by
CRHS concepts, the shape result is DCRHS, (for Forward Extrusion),
drawing by Quintic Subdivision for Uniform B-spline Curve.
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Figure (5.14) Geometric Die design for Forward Extrusion process depends on
CRHS concepts with Die profile length 13mm drawing by Quintic
Subdivision for Uniform B-spline Curve.

The difference in the shape geometry for these three curves (CRHS
curve, Quartic Subdivision for Uniform B-spline Curve, and Quintic
Subdivision for Uniform B-spline Curve) for the same design, it is noted in
Figure (5.15).

25
yL —e— DCRHS method
E 20 1 \\o\
n 15 - R S S —=— Quartic Subdivision
g for Uniform B-spline
&E 10 - Curnve
L Quintic  Subdivision
Qo 51 o1 urorm B-spline
Cune
O T T
0 5 10 15
DISTANCE FROM DIE INLET L (mm)

Figure (5.15): Find the difference in the shape geometry for these three curves
(CRHS curve, Quartic Subdivision for Uniform B-spline Curve, and
Quintic Subdivision for Uniform B-spline Curve).
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So the mean curvature for these three proposed technigue is shown in

Figure (5.16),and Appendix (C), the radius of curvature is shown in Figure
(5.17) and Appendix (D) ,and the toolpath generated for each technique is
shown in Figure (5.18),and the optimum cutter diameter for each surface
machined is illustrated in Figure (5.19), to calculate the maximum and
minimum deviations of these three shapes after calculating the deviation
shown in Figure (5.20),and deviation in three x-axis section in Figures
(5.21),(5.22),and (5.23).

Deviation =Z5 - Z,

Z=value for the desired surface in (z-dir).

Z,=value for machined surface in (z-dir).

In the same time it has been shown the line segments in Figures (5.24),
(5.25), and (5.26) for these three surfaces submitted before.

Table (5.2): The result Comparison between the surfaces presented above

Results Comparison

Quartic subdivision Quintic subdivision
NO# Parameters CRHS . . . .
for Uniform B-spline. | for Uniform B-spline.

Max deviation(between the
1 deserved surface and surface inf inf inf

machined)

Min deviation(between the

2 deserved surface and surface -5.0935 -12.4576 -4.6505
machined)

3 Max mean curvature 0.22 0.22 0.575

4 Min mean curvature -0.02 -0.08 -0.15

Suitable cutter radius for semi
5 . 4 mm 5mm 3 mm
finished process.

Number for segment of toolpath

6 ) 850 512 942
interpolator
7 Points in domain 5992 5985 5992
Length of segment for toolpath
8 1780.291 1433.2474 2015.7892

interpolator (total toolpath length).
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Figure (5.16: a, b, and c): The mean curvature.
a- Main curvature for CRHS method.
b- Main curvature for Quartic Subdivision for Uniform B-spline technical.
c- Main curvature for Quintic Subdivision for Uniform B-spline technical.
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Figure (5.17: a, b, and c): The radius of curvature drawing.
a- The radius of curvature for CRHS method.
b- The radius of curvature for Quartic Subdivision for Uniform B-spline technical.
c- The radius of curvature for Quintic Subdivision for Uniform B-spline technical.



CHAPTER FIVE Testing the Subdivision Algorithm in Production 116
Field

(a)

(b)

(©)

Figure (5.18: a, b, and c): The toolpath generated.
a- The toolpath for CRHS method.
b- The toolpath for Quartic Subdivision for Uniform B-spline technical.
c- The toolpath for Quintic Subdivision for Uniform B-spline technical.
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(a)

(b)

(©)

Figure (5.19: a, b, and c): The cutter ball dimension.
a- The cutter dimension for CRHS method.

b- The cutter dimension for Quartic Subdivision for Uniform B-spline technical.
c- The cutter dimension for Quintic Subdivision for Uniform B-spline technical.
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Figure (5.20: a, b, and c): The deviation between the desired surface and surface after
machined.

a- The Deviation for surface generated by CRHS method.

b- The Deviation for surface generated by Quartic Subdivision for Uniform B-
spline technical.

c- The Deviation for surface generated by Quintic Subdivision for Uniform B-
spline technical.
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Figure (5.21): The deviation between the desired surface and the machined
surface at x=5, 15, and 30 for surface generated by CRHS method.
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Figure (5.22): The deviation between the desired surface and the machined
surface at x=5, 15, and 30 for surface generated by using Quartic

subdivision algorithm to Uniform B-spline technical.
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Figure (5.23): The deviation between the desired surface and the machined
surface at x=5, 15, and 30 for surface generated by using Quintic
subdivision algorithm to Uniform B-spline technical.

Figure (5.24): The line segment for toolpath generated by CRHS method.
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Figure (5.25): The line segment for toolpath generated by Quartic subdivision
algorithm to uniform B-spline technical.

Figure (5.26): The line segment for toolpath generated by Quintic subdivision
algorithm to uniform B-spline technical.
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After designing the toolpath by using Matlab (\VV7.0) software, with DXF

file extension (after converting it from m file extension by Matlab
software), it has been exported to surfcam program as shown in Figure
(5.27).
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-8.161, 5.101, 1,589

DEF2DSN — Convert a DKF file to a SURFCAM 2008 design file.

Copyright (c) Surfware Inc. 2088. All rights reserved.
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Figure (5.27): Import the DXF file extension to Surfam design file.
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The machining parameters for this process (roughing and semi-finishing)

are illustrated in Table (5.3).

Table (5.3): Surfcam cutting options summary sheet

Stock material :UREOL (EPOXY RESIN)
Quiartic Quintic
NO# Machining parameters CRHS Subdivision for Subdivision for
Uniform B-spline. | Uniform B-spline.
L Cutter radius for semi finishing 4mm & mm 3 mm
process.
. Cutter radius for roughing 4mm 5 mm 3 mm
process.
3 Cutter travel length (m) 327 208 363.5
4 Spindle speed 14000 14000 18000
Min:0.382 Min:0.5073 Min:0.1432
5 Feed rate (m/min)
Max:10.000 Max: 10.000 Max: 10.000

6 Cutter material (ball nose) HSS HSS HSS
7 Flutes 2 2 2
8 Min X for stock (mm) 0
9 Min Y stock (mm) 0
10 Min Z stock (mm) 0
11 Max X for stock (mm) 90
12 Max Y for stock (mm) 42
13 Max Z for stock (mm) 45
14 Block number 4970 3204 5459
15 Program size (byte) 128742 81902 143092
16 | Toolpath type (cutting strategy) Zig-Zag toolpath for roughing and semi finishing process.
17 Axial in feed (mm) 5

The main problem for surfcam software is the zero coordinate for the
stock will be in the middle of the stock (because the shapes are
symmetrical) which is illustrated in Figure (5.26), and that the machining
side fails, because the zero coordinate should be in the out of the stock
(with defined value) or in the any corner for the stock. For that reason
Matlab program has been used to shift the zero coordinate to the defined
corner (the surfcam software fails to do this option), and define the base for

stock as xy-plan and the Z-direction is the cutting direction (note: the result
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in the Table (5.3) is after making Matlab modification for the coordinates

CHAPTER FIVE Testing the Subdivision Algorithm in Production

as shown in Figure (5.28)).And the simulation for the G-code result is

shown in Figure (5.29) and Appendix (E).

-plane, the Z-direction is cutting direction,

Figure (5.28): Thestock base is XY

and the zero coordinates in the stock corner.
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Figure (5.29): Toolpath verification and G-code program for CRHS method die

profile.
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The shapes result from the Surfcam software is shown if Figure (5.30).

(b)

Figure (5.30: a, b, and c): The semi finishing for the surfaces machined by Surfcam Software.
a- The semi finishing surface generated by CRHS method.
b- The semi finishing surface generated by Quartic Subdivision to Uniform B-spline technical.
c- The semi finishing surface generated by Quintic Subdivision to Uniform B-spline technical.



CHAPTER FIVE Testing the Subdivision Algorithm in Production 126
Field
5.5 Cutting Conditions for Experimental part

According to the conditions of the experimental work, the type of
material that was used is Ureol (an Epoxy Resin) .The tool used in this
work is tip ball mill cutter, tool material is (HSS) with @8 for CRHS
method, @10 for Quartic Uniform B-spline technical, and @6 for Quintic
Uniform B-spline technical, the machining was achieved on CNC machine
(Hermle C30U dynamic, 5-axis AC-kinematics, with specification of linear
motor drives (60.000 m/min), motor spindle 37kw 28.000 rpm) , the control
Is Siemens 840D,and the position error was below 0.002mm The machine
is operated in Technical University Darmstadt (Germany) as shown in
Figure (5.31), and the G-codes imported to this CNC machine was
achieved by Surfcam software and modified by Matlab (V7.0) software.
The G-code designed is 3-axis FANUC 15 MB system, and the machining

process was done without Lubricant.

Figure (5.31): CNC machine (Hermle C30U dynamic, 5-axis AC-kinematics)
which belongs to Technical University Darmstadt (Germany)
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The other cutting conditions are written in Table (5.3), and the surfaces

samples results from machining process are shown in Figure (5.32) and
Figure (5.33).

Figure (5.32): The samples result from Machining process by CNC milling machine.
a- Sample designed by CRHS method and machined with cutter radius R 4mm.

b- Sample designed by Quintic Subdivision for Uniform B-spline technical and
machined with cutter radius R 3mm.

b- Sample designed by Quartic Subdivision for Uniform B-spline technical and
machined with cutter radius R 5mm.
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()
Figure (5.33): The samples result from Machining process by CNC milling machine.
a- Sample designed by CRHS method and machined with cutter radius R 4mm.
b- Sample designed by Quartic Subdivision for Uniform B-spline technical and
machined with cutter radius R 5mm.
c- Sample designed by Quintic Subdivision for Uniform B-spline technical and
machined with cutter radius R 3mm.
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CHAPTER SIX

Conclusions and Suggestions for Future Work

This chapter summarizes the results of the work done within the
framework of the adopted subdivision technique with different subdivision
iterations, and compares the result surfaces with the surface generated by
CRHS method, described in this thesis.

The surfaces are designed using Matlab (\V7.0) software package, while
the program used to make machining simulation and G-code programs are
designed by using Surfcam software. These G-code programs are
implemented on a CNC machine (Hermle C30U dynamic, 5-axis AC-
kinematics, with specification of linear motor drives (60.000 m/min), motor
spindle 37kw 28.000 rpm) , the control is Siemens 840D,and the position
error was below 0.002mm this machine is operated in the Technical
University Darmstadt (Germany).

6.1 Conclusions:

1. The proposed technique of optimum cutter radius selection based on
the minimum of cutter radius of curvature proves to be efficient
enough in the prevention of cutter interference with the part
geometric.

2. The proposed graphical simulation is an important step in
preprocessing to submit an assessing, for the correctness of the
surface presented before applying real cutting process (by generating
the G-code by Surfcam software and show up the final shape
resulting from implementing the G-codes).

3. Generation of G-code program could be achieved by uncomplicated
method which is utilizing the capability of (PC) in saving the large
data and processing facility .to allow machining of complicated parts
that require multi processes that means a very large number of
G-code block.
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4.

The toolpath could be obtained in two directions (U-direction and
W-direction) for the roughing and semi finishing processes and the
optimum toolpath (the optimum one is accompanied with the lower
time milling process) can be chosen.

The proposed subdivision algorithm that is developed (subdividing
the cubic Uniform B-Spline curve to Quartic Uniform B-Spline
curve after three iterations of subdivision and Quintic B-spline curve
after four iterations of subdivision) is successful in representing the
die profile which is designed by CRHS method, and the effect of the
subdivision iteration is shown in choose the cutter radius, toolpath
design, and the surface deviation in roughing and semi finishing
processes.

The CNC machine (Hermle C30U) with position error below
0.002mm facilitated obtaining the accurate results when the samples
were machined by this CNC machine.

The sample shapes resulting from the experimental work by using
CNC machine (Hermle C30U),was superposed with the samples
shapes resulting from Simulation which is done by using Surfcam
software prove the accuracy work to design the G-code .

The Matlab program which is invented to transfer the zero
coordinate of the stocks on the stocks corner is successful, because
the G-code result was run successful on this CNC machine, and the
sample shapes results identify the samples shapes which result from
simulation program.

The difference in cutter radius, and the toolpath length (see table 5.3)
was affects directly the surface roughing results (recognize by

vision).

10.The conversion of the file extension from Matlab file to DXF file

was done successfully, that is because the commercial program
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which is used to make simulation of our samples imports this DXF

file extension successfully.

11.In all the fields which use subdivision algorithms (like subdivision
for the polygon, subdivision for the vertex boundary, or subdivision
for mesh node of the surface),the main reason for using these
algorithms is to increase the resolution (in image processing),and
increase the surface smoothness, In this thesis the cutter radius result
for the surface generated by Quintic Uniform B-spline surface is
(3mm),and the cutter used for surface generated by CRHS method is
(5mm).As widely known the cutter radius is the most important
indicator of the smoothness of surfaces, and that means the resulting
surface from the subdivision algorithm is smoother than the surface
resulting from the CRHS method.

6.2 Suggestions for Future Work:

1. Using more Subdivision iterations in Uniform B-spline technique
and making comparison with the surfaces (die profile) designed by
using DCRHS, CRHS, and ACRHS method, with Zig-Zag toolpath
type.

2. Drawing the die profile by using Bezier, Non-Uniform B-spline
technique, and comparison it with the die designed by using CRHS
or CMSR method.

3. Drawing the Die profile by approximation method with different
machining types (Iso-parametric machining, Iso-scallop machining,
and Iso-planar machining) and making comparing between the
results.

4. Studying the splitting matrix for Subdivision algorithm, and

developing the way to find the splitting matrixes.
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Appendix A

Derivative of the Uniform B-Spline Basis Functions with k=5:
The uniform B-spline basis function is determined by the general
equation (A.1):
Ni,l(u):1 1fti£uStiJr

L PP (A.1)
=0 otherwise

And other equation:

(u—t )N  (u) (t -uN (u)
N (u)= P bkel ik Lk (A.2)
Lk t —t. t —t

1

itk-1 i+k i+1

while k: is equation order (degree=k-1), t. =knot vector and symbolized

by (T).
In the beginning calculate the functions when (k=5) which is represented in
(Nis, N

i+1.5- Niy25), and select the range for the (i) value from the relation

(k <1 < n), and calculate the knot (t;) from the relation t, =i—(k-1) ,

then calculate (t;) when (k=5):

t,=i—(5-1)=i—4

By using the equations (A.1) and (A.2) it's easy to calculate the knot vector

(T):
T={i-4,i-3,i-2,i—-1,i,i+1,i+2,i+3,i+4,i+5,i+6}

And calculate the values from (t;) to (t;,,,):
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When k =1:
N, =1 for i—4£u<i—3\
=0 otherwise
N (=1 for 1-3<u<i-2
= otherwise
Nip (w)=1 for 1-2<u<i-1
= otherwise
N, (w)=1 for 1i—-1<u<i
=0 otherwise
Ny (W)= for 1<u<i+l
= otherwise
N,y (W) =1 for Cl<uciin S e (A.3)
= otherwise
N6 () =1 for 1+2<u<i+3
= otherwise
N7, (w=1 for 1+3<u<i+4
= otherwise
Nig(w)= for 1+4<u<i+5
=0 otherwise
N, (u)=1 for 1+5<u<i+6
=0 otherwise /
Then calculate the equations when k =2: )
N, (W) =(u—=1+4)N;; + (-2 -u)N,,, , ()
Nij (W =W—=1+3)N;, ; + (A =1-uwN;,,,(w)
Niias () = (W—i+2)N,, +(i— WN,s (1) S (A.4)

Nis,(W)=@—-1+DN;; +(+1-uN, 4, ()

Niy,(@W)=@U—-1)N; 4, +(+2-0)N;;5,(v)

Niso(w)=@u—-1-DN;,5;, +(@+3-u)N, 4, (u

_
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When k=3:
—-1+D[(u-1+HN; (W) + (- 2-wNy, ; (u)] \
Nis3(w) = : — - +
’ 1-2)-0-4)
(—1-w[(u—-1+3)Ny,; (W +G-1-uN,, ()]
i-1)—-(@1-3)

S Niz(u) = %[(u—i+ 4)2Ni,1(u) +(u-1+4)(i—2—-u)

N+ G-I-uu-i+3)N;,, (v +
(i-1-u)’N;,, W]

Niis(w) =%[(u—i+3)2Nm,1<u>+(u—i+3)(i—1—u)

Ny @)+ (= w)(u—i+ 2N,y (W) +
(i- u)zNi+3,1(u)]-
| (A5
Niy @) =2 [0 =+ 2Ny () + (u =i+ 2~ )
Nis W+ (+1-uw)(u—-1+1)N;,; (v +
(1+1- u)2 N, (W]
N (u) = %[(u 1) Ny (W) + (-4 1)+ 1 - u)
Ny ()4 (42— u)(u - DNy, (0) +
(1+2- u)z Niys (W]
Ny (u) = %[(u i Ny () + (- )+ 2~ u)

N5 wW+0+3-uw)(u-i-1)N;;5,(u)+

(i+3 _u)2N1+6,1(u)]- j
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if k=4
- (u—;+4) *%*[(u—i+4)2Ni,1(u)+(u—i+4)(i—2—u) \
N1 . 1’l(u)+(i—1—u)(u—i +3)Ni N

(i-u) u)

(W G-1-u)?

W+ ~i+3)’

(1 1-u)N N

« L *[(
21(u)+(1 u)(u— i+2)Ni+

N1 o 1(u)+(u—i+3)
2 l(u)+

@ —u)2Ni L W]

"N, :%[(u—i +4)3Ni’l(u)+(u—i +4)2(i—2—u)Ni LW+
-i+4)(i-1-wu-i+3N 1(u)+(u—i+4)(i—1—u)2

N @+G-w-i+3PN @+ {-u)(u-i+3)

(i-1-uN 21(u)+(i—u)2(u—i+2)Ni+21(u)+

(i-uy N1 31(u).

(u 1+3)*1*[(

2
ir14 3 —1+3)

N » 1(u)+(u—i+3)

(1—1—u)Ni .\ 1(u)+ (i—u)(u—i+2)Ni+2 1(u)+(i—u)2
(1+1_u)*%*[(u—i+2)2N

3’l(u)+ i+1-u)(u—1+ l)N1 . 3J(u)

W]+

1+31 3
(u—1+2)(i—u)Ni+

+2,1(u)+

+(i+1—u)2N L1

:—[(u i+3yN

. . 2/
N 1475 1(u)+(u—1+3) (1—1—u)Ni+

2’1(u)+

(u=i+3)(i-w)(u-i+2)N

L W+ (u=i+3)(i-u)y

N . 1(u)+(i+1—u)(u—i+2)2N

(u=i+2)(i-wN

(i+1—u)3N_+4l(u).

I COEY(ERERY j
. 1(u)+(i+1—u)2 -i+DN _ (u)+

(A.6)
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_1

24 6

(u=i+2)(+H Wi+ DN Hu=i+2)( 1)
N, @+ 2-0)u=-i+DPN, ) H(i+2-u)(u-i+1)
(i+1—u)Ni+4J(u)+(i+2—u)2 (W-DN_, (w+
(i+2—u)3Ni+5,1(u).

s =é[(u—i+1)3Ni+3’1(u)+(u—i+1)2(i+1—u)Ni+4’1(u)+
=i+ D)+ 2-w)(-DN,_ | (W =i+ 12—y
Ni+5’1(u)+(i+3—u)(u—i)2Ni+4,1(u)+(i+3—u)(u—i)
(i+2—u)Ni+5’1(u)+(i+3—u)2 (u=i-DN__ (uy+

(i+3—u)3Ni+ (u).

6,1

When k=5: \

N =2—14[(u—i+4)4Ni 1(u)+(u—i+4)3(i—2—u)Ni+1 (W
(u—i+4y (i-1-u)(u-i+3)N 1(u)+(u—i+4)2(i—1—u)2

N (i) —wu—i+3P N (u)+(u—i+4)

[(u=i+2PN. (W u-i+27(~wN - (u)+ \\

> (A.6)

J

(i—w)(u-i+3)(i-1-wN l(u)+(u—i+4)(i—u)2 (u—i+2)
’ > (A7)

N 1(u)+(u—i+4)(i—u)3Ni+3 1(u)+(i+1—u)(u—i+3)3
N 1(u)+(i+1—u)(u—i+3)2(i—1—u)Ni+2 (W (i+1-u)
(u—-1 +3)(i—u)(u—i+2)Ni+2 1(u)+(i+1—u)(u—i+3)(i—u)2

1 2 : 2 . 2
Ni +3,l(u)+(1+1—u) (u—-1+2) Ni +2,l(u)+(1+1—u)

(u=i+2)(-wWN_ (W+(i+1-u) w-i+DN (W

(i+1—u)“Ni+4 (], J
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N :214[(u—i+3)4Ni+U(u)+(u—i+3)3(i—1—u)
N, @+@=i+3) (~w=-i+2N, | W+
(u—i+3)2(i—u)2Ni+371(u)+(u—i+3)(i+1—u)
(@=i+2)’N, | (+@=i+3)(i+1-u)(u-i+2){i-u)

Ni+371(u)+(u—i+3)(i+1—u)2 (u-i+DN,_ (+

(u—i+3)(i+1—u)3Ni+4,1(u)+(i+2—u)(u—i+2)3
Ni+2J(u)+(i+2—u)(u—i+2)2(i—u)Ni+3’1(u)+
(i+2-w)(u=-i+2)(+l-wE-i+DN, W+
(i+2—u)’ (u—i+2)(i+1—u)2Ni+4’l(u)+(i+2—u)2
(u—i+1)2Ni+37](u)+(i+2—u)2(u—i+1)(i+1—u)
N, @+(+2-w)’@-DN_ (+
(i+2—u)4Ni+5’l(u)].

1

. 4 . 3.
s 24[(u—1+2) Ni+2,1(u)+(u—1+2) (1—u)Ni+3,1(u)+

(u—i+2)2(i+1—u)(u—i+1)Ni+31(u)+(u—i+2)2

(i+1—u)2Ni+41(u)+(u—i+2)(i+2—u)(u—i+1)2

N, @+ @=i+2)(+2-wu-i+ D+ 1-wN, | @+

(u—i+2)(i+2-u)’ (u—i+2)Ni+41(u)+(u—i+2)(i+2—u)3

N (+(i+3-u) (u—i+1)’ N (W+(i+3-u)
(u—i+1)2(i+1—u)Ni+41(u)+(i+3—u) (u—i+1)(i+2-u)

@-DN _ (W+@{+3-uw)u—i+D+2-u’ N ()+

(i+3-u)(u—i+2)* Ni+41(u)+(i+3—u)2(u—i+2)(i+2—u)

S

- (AT)

N . 1(u)+(i+3—u)3 -i-DN_ _ (0)+
(i+3—u)4Ni+61(u)].
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From the equation above it's easy to calculate (p (u)) for any piece of the

curve with the enclosed period (i < u < 1+l) depending on the

functionN; (u) =1, and from notified the equations above, we note that
the function (N;,,, =1) just in this period, and making summation of this

functions in one equation will yield (p(u)):

N

1 . 4 1 . . 3
uw=—C@0+1-uw)'p,+—[u—-1+3)a+1-u)’p., +
p(w) 24( )" P 24[( ) )" Piyq
(+2-w)u—-i+2)(i+1-u)’p,, +@(+2-w)’@—-i+1)

1 o
ﬁ[(u—1+2)
(i+1-uwlp,+U—-i+2)(+2-wu—-i+Di+1-wp., +> (A-8)
U—i+2)[i+2-u)l@U—-i+2p,,+({+3-wu-i+l)?
G+1-vwp,, +@+3-wWUu-1+DE+2-uw)(u-1p,,, +

(+1-wp;, +(1+2 —u)3u —)pig ]+

G+3-wWu-i+Di+2-u)’p,, +({i+3-u)’

(u—i+2)zpi+2]- /
and it could be written in another form :
p.(u) :i[(a ~2u+u)(1-2u+ud)p, +((u+3)(1-u) \

(1-2u+u’)+2-u)u+2)(1-2u+u?)+@-4u+u?)
+D(1-uw+Q2-w@-4u+u?)wp  +((u” +4u+4)

..(A9
(1-2u+u®)+@u+2)2-uw)(u+1)1-u)+@+2) > (4.5)
@G-4u+u)u+2)+G-ww’+2u+H1-w)+B-u)
W+D2-wu+G-u)u+1)@-4u+u’)+©-6u+u?)
J

(u® —4u+ 4)pi . 2].
where (0 <u<1), pi(u) is the function for the curve [p..P. ,-P., 2): is the

control points.
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p () =i[(u4 —4u’ +6u” —4u+1)p +(—4u* +12u’ —6u’ ~12u+l)p_

+(5u* —8u’ +9u’ ~60u+75)p. 1. ceeeeren (AL10)

From equation(A.10)the Matrix form(M)is theresult.

1 -4 5 0 0
-4 12 -8 0 0
M=_1l6 -6 9 0 0 ceverenene (ALTD)
24
-4 -12 =60 1 0
1 1 750 1
1 -4 5 0 0]p,|
-4 12 -8 0 0| p;
Pi(u)=i[u4 wulu 16 -6 9 0 0| py, ... (A12)
—4 =12 =60 1 0| p;y
11 75 0 1 ||p.s]|
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Appendix B

Subdividing the cubic B-spline surface

o Poo+ Pyot Post Pug
0,0 —

'
Pos
'
Po,2

!

Pos

!

P1o

r_
P =

!

r_
P

!

!

! —
P2,

'
P23
'
P30

31
'
P

3,3

P, =

Pyq =

P20 =

4
Poot Piot 6( Pos+ pl,l) + Poot Pr2

16
Pos+ Prat Po2t Pr

4
pO,l + pl,l + 6( p0,2 + p1,2) + p0,3 + p1,3

16
Poo t Post 6( Prot+ pl,l) + Pyt Pay

16
Poo + 6 Prot Poot 6( Pos + 6 Pt p2,1) + P2t 6 P2t Py

64
Pos+ Po2 +6(Puy+ Pra) + Past Pas

16
Poa+ 6P+ Poy +6(Py, +6P2+ Pya)+ Pos+6Ps+ Pos

64
Prot Poot Pyt Pay

4
Prot Pyot 6( Piit P21)+ Pro+ Pas

16
Pyt Pyt Prpt+ P2,2

4
pl,l + pZ,l + 6( pl,Z + pZ,Z) + p1,3 + p2,3

16
Prot Pt 6( Poot pz,l) + P30+ P3s

16

pr — pl,O + 6 p2,0 + p3,0 + 6( pl,l + 6 p2,1 + p3,l) + pl,2 + 6 p2,2 + p3,2

64
Puit Puo+6(Pp1+ Poz) + Past Pao

16

pr — pl,l + 6 p2,l + p3,1 + 6( pl,2 + 6 p2,2 + p3,2) + p1,3 + 6 p2,3 + p3,3

64

Each of these points can be classified into three categories-face point, edge

point and vertex point —depending on each point relationship to the original

control point mesh. The points p,, p;,. p;,and p;,, which are shown in the

Figure (4.14).
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Rewrite the equation with these face point substituted on the right —hand

side, and obtain

Poo = Foo
_ AFoo +4Fy, + 4P, +4Py,
Pos = 16
p<'),2 = FO,l
' 4Fy, +4F,, +4p,, =4p,,
Pos = 16
pl, = 4Foo +4F, +4p,, +4py,
’ 16
, AR+ AR, +4F  +4F  +4p+4Dg; +32p, +4D,; +4D,,
Py = 64
pl, = 4Fy, +4F, +4p;, +4p,,
’ 16
, 4Fy, +4F,, +4F, +4F , +4p;; +4p,, +32p,, +4D,, + 4D,
Pz = 64
P20 = Fuo
P, = 4F  +4F,; +4p,, +4p,,
’ 16
p;,z =F,
P, = 4F, +4F, +4p,, +4p,,
’ 16
pl, = 4F +4F, +4p,, +4D,,
' 16
/ AF , +4F,  +4F, +4F, +4p,, +4p;; +32p,, +4py; +4D,,
P30 = 64
pl, = 4F, +4F,, +4p,, +4p,,
' 16
pé,s _ AF , +4F,, +4F , +4F,, +4p,, +4p,, +32p,, +4p;, +4D,;

64



Appendices 147
Simplifying these equations we obtain

pé,o = Fo’,o

D), = Foo + Fos Z Pos * Pia

Po.. = Fou

D), = Foi+Foo+ Po2+ Pio
' 4

D, = Foo + Fio+ Puo + Pus
' 4

D/, = Foo+ Foi+Fio+Fii+ Do+ Pos 8P + Py + Py
’ 16

D!, = Foi+Fii+ P+ Py
’ 4

o, = FoatFoo+F+F,+ P+ Po,+8P, + Py + P
’ 16

p;,o = Fl,o

D), = Fio+Fui+ P+ Py
' 4

p;,z = F1,1

D), = Fii+Fo+ D+ Po
' 4

DL, = Fiot+Foo+ Poot Poy
' 4

o), = Fio+F o+ F+F+ D0+ Py +8P,0 + Py + P
' 16

D, = Fiit+Fo+ Do+ P
' 4

DL, = Foot+ P+ R, +F,+ D, + P, +8D,, + Psot+ P
' 16

In  examining these equation ,we see that the points

Po1s Poss Pros Pray Pas, P aNd p;,, which are called "edge™ points , are given

as the average of four point —the two point that define the original edge and
the two new face point of the face sharing the edge . This is shown in the

following figure
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Side of the equation above, we obtain

p(’),o = Fo,o
p(’),l = EO,l
pé,z = FO,l
pé,a = Eo,z
p1’,0 = El,o
' I:0,0 + F0,1 +F1,0+F1,1 + Pro t+ Poy +8p1’1 + Py1t+ Pip
11 =
16
pl’,z = El,z
' FO,l + Fo,z + F1,1 + F1,2 + Pi1 t Po2 +8p112 + Poot Pis
Pis =
16
p;,o = Fl,O
PZ,,l = Ez,l
Py, =F,
pé,s = Ez,z
pé,o = E3,o
, o Rt R R+ R+ Do+ Py 8P, Pay + Py
P31 =
16
P, = Es,
o F1,1 + F2,1 + Fl,2 + Fz,z + P+ Po +8p2,2 + P53, + Pys
P33 = 16

The remaining four points, p;,,p;,, p;, and p;,, as shown in the figure

below
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Appendix C
The Mean curvature for Surface generated by CRHS Method
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The Mean curvature for Surface generated by (Subdivision method) Quartic Uniform B-spline surface
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The Mean curvature for Surface generated by (Subdivision method) Quantic Uniform B-spline surface
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Appendix D
The Radius of Curvature for Surface generated by CRHS Method:
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The Radius of Curvature for Surface generated by (Subdivision method) Quartic Uniform B-spline surface
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The Radius of Curvature for Surface generated by (Subdivision method) Quintic Uniform B-spline surface
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N1 G17 G40 G80 G90
N2 T7 M6

N3 M3 S14000

N4 G00 G54 X90. Y-10.
N5 G43 Z67. H7

N6 M8

N7 G00 Z43.7206

N8 G01 Z41.2206 F382.0
N9 X90.0207 Y4.8906 F10000.0
N10 X89.9527 Y6.5312
N11 X90.0409 Y8.1406
N12 X90.2206 Y9.7031
N13 X88.964 Y10.7031
N14 X86.013 Y12.1562
N15 X84.6696 Y13.0469
N16 X83.4401 Y14.1094
N17 X82.2581 Y15.2188
N18 X81.1381 Y16.4062
N19 X80.135 Y17.7031
N20 X79.2527 Y19.0625
N21 X78.4669 Y20.5
N22 X77.7944 Y21.9844
N23 X77.2257 Y23.5
N24 X76.7391 Y25.0625
N25 X76.332 Y26.6406
N26 X75.9919 Y28.2344
N27 X75.4697 Y31.4531
N28 X75.1037 Y34.6875
N29 X74.9901 Y36.3125
N30 X75.0003 Y42.8438
N31 X74.8862

N32 X74.876 Y36.3125
N33 X74.9891 Y34.6875
N34 X75.3537 Y31.4531
N35 X75.874 Y28.2344
N36 X76.2127 Y26.6406
N37 X76.6183 Y25.0625
N38 X77.103 Y23.5

N39 X77.6696 Y21.9844
N40 X78.3396 Y20.5
N41 X79.1224 Y19.0625
N42 X80.0013 Y17.7031
N43 X81.0006 Y16.4062
N44 X82.1164 Y15.2188
N45 X83.2938 Y14.1094
N46 X84.5186 Y13.0469
N47 X85.857 Y12.1562
N48 X88.7967 Y10.7031
N49 X90.0485 Y9.7031
N50 X89.8695 Y8.1406
N51 X89.7816 Y6.5312
N52 X89.8493 Y4.8906
N53 X89.8288 Y0

N54 X89.3163

N55 X89.3367 Y4.8906
N56 X89.2697 Y6.5312
N57 X89.3566 Y8.1406
N58 X89.5336 Y9.7031
N59 X88.2961 Y10.7031
N60 X85.39 Y12.1562
N61 X84.0669 Y13.0469
N62 X82.8561 Y14.1094
N63 X81.6921 Y15.2188
N64 X80.5891 Y16.4062
N65 X79.6012 Y17.7031
N66 X78.7323 Y19.0625
N67 X77.9585 Y20.5
N68 X77.2962 Y21.9844
N69 X76.7361 Y23.5
N70 X76.2569 Y25.0625
N71 X75.856 Y26.6406
N72 X75.5211 Y28.2344

N4785 X19.6129 Y28.2344 713.7762
N4786 X19.3344 Y26.6406 Z13.9713
N4787 X19.0008 Y25.0625 Z14.2048
N4788 X18.6023 Y23.5 Z714.4839
N4789 X18.1364 Y21.9844 714.8101
N4790 X17.5855 Y20.5 715.1958
N4791 X16.9418 Y19.0625 Z15.6465
N4792 X16.2191 Y17.7031 Z16.1526
N4793 X15.3974 Y16.4062 Z216.728
N4794 X14.4799 Y15.2188 Z17.3704
N4795 X13.5117 Y14.1094 Z718.0483
N4796 X12.5046 Y13.0469 Z18.7535

Appendix E

Part program of the adopted technique

CRHS method:

N4797 X11.4041 Y12.1562 719.5241
N4798 X8.9868 Y10.7031 Z21.2167
N4799 X7.9574 Y9.7031 Z21.9375
N4800 X8.1047 Y8.1406 721.8344
N4801 X8.1769 Y6.5312 721.7838
N4802 X8.1212 Y4.8906 721.8228
N4803 X8.1382 Y0 Z21.8109

N4804 X6.0289 Z218.5

N4805 X6.011 Y4.8906 Z718.5103
N4806 X6.0698 Y6.5312 718.4763
N4807 X5.9934 Y8.1406 Z18.5204
N4808 X5.8378 Y9.7031 Z18.6103
N4809 X6.926 Y10.7031 Z17.982
N4810 X9.4817 Y12.1562 Z16.5065
N4811 X10.6451 Y13.0469 Z715.8348
N4812 X11.7099 Y14.1094 715.22
N4813 X12.7335 Y15.2188 Z14.6291
N4814 X13.7034 Y16.4062 Z14.0691
N4815 X14.5722 Y17.7031 Z13.5675
N4816 X15.3363 Y19.0625 Z13.1264
N4817 X16.0168 Y20.5 Z212.7335
N4818 X16.5992 Y21.9844 712.3972
N4819 X17.0918 Y23.5 712.1128
N4820 X17.5131 Y25.0625 Z11.8696
N4821 X17.8657 Y26.6406 Z11.666
N4822 X18.1602 Y28.2344 Z711.496
N4823 X18.6125 Y31.4531 Z11.2348
N4824 X18.9294 Y34.6875 711.0518
N4825 X19.0278 Y36.3125 Z10.9951
N4826 X19.0189 Y42.8438 211.0002
N4827 X17.8105 Z8.6787

N4828 X17.8197 Y36.3125 Z8.6744
N4829 X17.7168 Y34.6875 78.7224
N4830 X17.3851 Y31.4531 Z8.877
N4831 X16.9118 Y28.2344 79.0978
N4832 X16.6036 Y26.6406 29.2415
N4833 X16.2346 Y25.0625 79.4135
N4834 X15.7936 Y23.5 79.6192
N4835 X15.2782 Y21.9844 79.8595
N4836 X14.6687 Y20.5 710.1437
N4837 X13.9565 Y19.0625 210.4758
N4838 X13.1569 Y17.7031 Z10.8487
N4839 X12.2477 Y16.4062 Z11.2726
N4840 X11.2327 Y15.2188 Z11.746
N4841 X10.1614 Y14.1094 712.2455
N4842 X9.0471 Y13.0469 Z12.7651
N4843 X7.8296 Y12.1562 Z13.3329
N4844 X5.1551 Y10.7031 Z14.58
N4845 X4.0162 Y9.7031 715.1111
N4846 X4.1791 Y8.1406 Z15.0351
N4847 X4.259 Y6.5312 Z14.9978
N4848 X4.1974 Y4.8906 Z15.0266
N4849 X4.2161 Y0 Z15.0178

N4850 X2.7138 Z11.3909

N4851 X2.6944 Y4.8906 Z11.398
N4852 X2.7583 Y6.5312 711.3747
N4853 X2.6754 Y8.1406 Z11.4049
N4854 X2.5065 Y9.7031 Z11.4664
N4855 X3.6873 Y10.7031 Z11.0366
N4856 X6.4603 Y12.1562 210.0273
N4857 X7.7228 Y13.0469 Z79.5678
N4858 X8.8781 Y14.1094 79.1473
N4859 X9.9888 Y15.2188 78.743
N4860 X11.0413 Y16.4062 Z8.36
N4861 X11.9839 Y17.7031 Z8.0169
N4862 X12.813 Y19.0625 Z7.7151
N4863 X13.5514 Y20.5 Z7.4464
N4864 X14.1833 Y21.9844 77.2164
N4865 X14.7178 Y23.5 Z27.0218
N4866 X15.175 Y25.0625 Z6.8554
N4867 X15.5576 Y26.6406 Z26.7162
N4868 X15.8771 Y28.2344 76.5999
N4869 X16.3679 Y31.4531 Z6.4212
N4870 X16.7118 Y34.6875 Z6.2961
N4871 X16.8185 Y36.3125 Z6.2572
N4872 X16.8089 Y42.8438 Z6.2607
N4873 X16.0219 Z3.7647

N4874 X16.0318 Y36.3125 Z3.762
N4875 X15.9221 Y34.6875 Z3.7914
N4876 X15.5685 Y31.4531 Z3.8861
N4877 X15.0641 Y28.2344 74.0213
N4878 X14.7356 Y26.6406 Z4.1093
N4879 X14.3424 Y25.0625 Z74.2147
N4880 X13.8724 Y23.5 Z4.3406
N4881 X13.323 Y21.9844 74.4878
N4882 X12.6734 Y20.5 Z4.6619
N4883 X11.9144 Y19.0625 Z4.8653
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N4884 X11.0622 Y17.7031 Z5.0936
N4885 X10.0932 Y16.4062 Z75.3532
N4886 X9.0114 Y15.2188 Z5.6431
N4887 X7.8697 Y14.1094 75.949
N4888 X6.6821 Y13.0469 76.2672
N4889 X5.3844 Y12.1562 76.615
N4890 X2.534 Y10.7031 Z7.3787
N4891 X1.3202 Y9.7031 Z7.704
N4892 X1.4938 Y8.1406 Z7.6574
N4893 X1.5791 Y6.5312 Z7.6346
N4894 X1.5134 Y4.8906 Z7.6522
N4895 X1.5333 Y0 Z7.6469

N4896 X0.6837 Z3.8142

N4897 X0.6633 Y4.8906 Z23.8178
N4898 X0.7303 Y6.5312 Z3.8059
N4899 X0.6434 Y8.1406 Z3.8213
N4900 X0.4664 Y9.7031 Z3.8525
N4901 X1.7039 Y10.7031 Z3.6343
N4902 X4.61 Y12.1562 73.1218
N4903 X5.9331 Y13.0469 Z2.8886
N4904 X7.1439 Y14.1094 Z2.6751
N4905 X8.3079 Y15.2188 72.4698
N4906 X9.4109 Y16.4062 Z2.2753
N4907 X10.3988 Y17.7031 Z2.1011
N4908 X11.2677 Y19.0625 Z1.9479
N4909 X12.0415 Y20.5 71.8115
N4910 X12.7038 Y21.9844 71.6947
N4911 X13.2639 Y23.5 21.5959
N4912 X13.7431 Y25.0625 Z1.5114
N4913 X14.144 Y26.6406 Z1.4407
N4914 X14.4789 Y28.2344 71.3817
N4915 X14.9932 Y31.4531 71.291
N4916 X15.3537 Y34.6875 Z1.2275
N4917 X15.4655 Y36.3125 71.2077
N4918 X15.4554 Y42.8438 71.2095
N4919 X15.1138 Z-1.3853

N4920 X15.124 Y36.3125 Z-1.3862
N4921 X15.0109 Y34.6875 Z-1.3763
N4922 X14.6463 Y31.4531 Z-1.3444
N4923 X14.126 Y28.2344 Z-1.2989
N4924 X13.7873 Y26.6406 Z-1.2692
N4925 X13.3817 Y25.0625 Z-1.2338
N4926 X12.897 Y23.5 Z-1.1913
N4927 X12.3304 Y21.9844 7-1.1418
N4928 X11.6604 Y20.5 Z-1.0832
N4929 X10.8776 Y19.0625 Z-1.0147
N4930 X9.9987 Y17.7031 Z-0.9378
N4931 X8.9994 Y16.4062 Z-0.8504
N4932 X7.8836 Y15.2188 Z-0.7527
N4933 X6.7062 Y14.1094 Z-0.6497
N4934 X5.4814 Y13.0469 Z-0.5426
N4935 X4.143 Y12.1562 Z-0.4255
N4936 X1.2033 Y10.7031 Z-0.1683
N4937 X-0.0485 Y9.7031 Z-0.0588
N4938 X0.1305 Y8.1406 Z-0.0744
N4939 X0.2184 Y6.5312 Z-0.0821
N4940 X0.1507 Y4.8906 Z-0.0762
N4941 X0.1712 Y0 Z-0.078

N4942 X0 Z-4.

N4943 X-0.0207 Y4.8906

N4944 X0.0473 Y6.5312

N4945 X-0.0409 Y8.1406

N4946 X-0.2206 Y9.7031

N4947 X1.036 Y10.7031

N4948 X3.987 Y12.1562

N4949 X5.3304 Y13.0469

N4950 X6.5599 Y14.1094

N4951 X7.7419 Y15.2188

N4952 X8.8619 Y16.4062

N4953 X9.865 Y17.7031

N4954 X10.7473 Y19.0625

N4955 X11.5331 Y20.5

N4956 X12.2056 Y21.9844

N4957 X12.7743 Y23.5

N4958 X13.2609 Y25.0625

N4959 X13.668 Y26.6406

N4960 X14.0081 Y28.2344

N4961 X14.5303 Y31.4531

N4962 X14.8963 Y34.6875

N4963 X15.0099 Y36.3125

N4964 X14.9997 Y42.8438

N4965 G00 Z43.7206

N4966 M9

N4967 G90 GO0 G49 20 M5

N4968 X0 Y0

N4969 M30

N4970 %
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Part program of the adopted (Subdivision algorithm)

N1 G17 G40 G80 G90
N2 T8 M6

N3 M3 S14000

N4 G00 G54 X90. Y-10 .
N5 G43 Z66. H8

N6 M8

N7 G00 742.764

N8 G01 740.264 F324.7
N9 X90.0128 Y4.2118 F10000.0
N10 X89.941 Y6.2977
N11 X90.264 Y8.169
N12 X90.2599 Y9.7494
N13 X88.6689 Y11.115
N14 X81.9677 Y16.1909
N15 X80.3208 Y17.5535
N16 X78.8341 Y19.0175
N17 X77.6446 Y20.7304
N18 X76.9275 Y22.668
N19 X76.4142 Y24.7055
N20 X76.0002 Y26.7743
N21 X75.6844 Y28.8578
N22 X75.0799 Y35.1018
N23 X74.9652 Y37.1973
N24 X75.0069 Y39.2953
N25 X75.0005 Y43.4974
N26 X74.8119

N27 X74.8182 Y39.2953
N28 X74.7768 Y37.1973
N29 X74.8908 Y35.1018
N30 X75.4915 Y28.8578
N31 X75.8053 Y26.7743
N32 X76.2167 Y24.7055
N33 X76.7268 Y22.668
N34 X77.4393 Y20.7304
N35 X78.6213 Y19.0175
N36 X80.0987 Y17.5535
N37 X81.7353 Y16.1909
N38 X88.3943 Y11.115
N39 X89.9754 Y9.7494
N40 X89.9794 Y8.169
N41 X89.6584 Y6.2977
N42 X89.7298 Y4.2118
N43 X89.717 Y0

N44 X88.8718

N45 X88.8842 Y4.2118
N46 X88.8142 Y6.2977
N47 X89.1292 Y8.169
N48 X89.1252 Y9.7494
N49 X87.574 Y11.115
N50 X81.0409 Y16.1909
N51 X79.4352 Y17.5535
N52 X77.9858 Y19.0175
N53 X76.8261 Y20.7304
N54 X76.127 Y22.668
N55 X75.6266 Y24.7055
N56 X75.223 Y26.7743
N57 X74.9151 Y28.8578
N58 X74.3257 Y35.1018
N59 X74.2139 Y37.1973
NG60 X74.2546 Y39.2953
NG61 X74.2484 YA43.4974
N62 X73.317

N63 X73.323 Y39.2953
N64 X73.2836 Y37.1973
N65 X73.3919 Y35.1018
NG66 X73.9625 Y28.8578
NG67 X74.2606 Y26.7743
NG68 X74.6514 Y24.7055
N69 X75.1359 Y22.668
N70 X75.8127 Y20.7304
N71 X76.9354 Y19.0175
N72 X78.3387 Y17.5535

N3019 X29.0387 220.4022

N3020 X29.0354 Y39.2953 720.4076
N3021 X29.0576 Y37.1973 Z20.3722
N3022 X28.9965 Y35.1018 Z20.4694
N3023 X28.6749 Y28.8578 220.9812
N3024 X28.5069 Y26.7743 Z21.2486
N3025 X28.2866 Y24.7055 221.5992
N3026 X28.0135 Y22.668 Z22.0338
N3027 X27.632 Y20.7304 222.641
N3028 X26.9992 Y19.0175 Z23.6481
N3029 X26.2082 Y17.5535 Z224.907
N3030 X25.332 Y16.1909 726.3015

Quartic Uniform B-spline technique:

N3031 X21.7668 Y11.115 Z31.9755
N3032 X20.9203 Y9.7494 Z33.3227
N3033 X20.9181 Y8.169 733.3262
N3034 X21.09 Y6.2977 Z33.0526
N3035 X21.0518 Y4.2118 Z33.1134
N3036 X21.0586 Y0 Z33.1026
N3037 X16.943 Z30.1824

N3038 X16.935 Y4.2118 Z30.1924
N3039 X16.9798 Y6.2977 Z30.1363
N3040 X16.7783 Y8.169 Z30.3888
N3041 X16.7809 Y9.7494 Z730.3856
N3042 X17.7729 Y11.115 729.1417
N3043 X21.951 Y16.1909 Z23.9025
N3044 X22.9779 Y17.5535 Z722.6149
N3045 X23.9048 Y19.0175 Z221.4525
N3046 X24.6464 Y20.7304 Z20.5226
N3047 X25.0935 Y22.668 219.9619
N3048 X25.4135 Y24.7055 Z719.5606
N3049 X25.6717 Y26.7743 Z19.2369
N3050 X25.8686 Y28.8578 Z18.99
N3051 X26.2455 Y35.1018 Z18.5174
N3052 X26.317 Y37.1973 Z18.4277
N3053 X26.291 Y39.2953 Z18.4603
N3054 X26.295 Y43.4974 Z18.4554
N3055 X23.7864 716.2136

N3056 X23.7819 Y39.2953 Z16.2181
N3057 X23.8114 Y37.1973 Z716.1886
N3058 X23.7303 Y35.1018 Z216.2697
N3059 X23.3028 Y28.8578 Z716.6972
N3060 X23.0795 Y26.7743 Z16.9205
N3061 X22.7868 Y24.7055 717.2132
N3062 X22.4238 Y22.668 Z17.5762
N3063 X21.9168 Y20.7304 Z18.0832
N3064 X21.0757 Y19.0175 Z218.9243
N3065 X20.0244 Y17.5535 Z719.9756
N3066 X18.8599 Y16.1909 Z221.1401
N3067 X14.1214 Y11.115 Z25.8786
N3068 X12.9964 Y9.7494 Z27.0036
N3069 X12.9935 Y8.169 Z27.0065
N3070 X13.2219 Y6.2977 Z26.7781
N3071 X13.1711 Y4.2118 Z26.8289
N3072 X13.1802 Y0 Z26.8198
N3073 X9.8176 223.057

N3074 X9.8076 Y4.2118 723.065
N3075 X9.8637 Y6.2977 Z23.0202
N3076 X9.6112 Y8.169 723.2217
N3077 X9.6144 Y9.7494 723.2191
N3078 X10.8583 Y11.115 722.2271
N3079 X16.0975 Y16.1909 Z18.049
N3080 X17.3851 Y17.5535 Z217.0221
N3081 X18.5475 Y19.0175 Z716.0952
N3082 X19.4774 Y20.7304 Z15.3536
N3083 X20.0381 Y22.668 Z14.9065
N3084 X20.4394 Y24.7055 Z14.5865
N3085 X20.7631 Y26.7743 Z14.3283
N3086 X21.01 Y28.8578 Z14.1314
N3087 X21.4826 Y35.1018 Z13.7545
N3088 X21.5723 Y37.1973 Z13.683
N3089 X21.5397 Y39.2953 Z13.709
N3090 X21.5446 Y43.4974 Z13.705
N3091 X19.5978 710.9613

N3092 X19.5924 Y39.2953 Z210.9646
N3093 X19.6278 Y37.1973 210.9424
N3094 X19.5306 Y35.1018 Z11.0035
N3095 X19.0188 Y28.8578 Z11.3251
N3096 X18.7514 Y26.7743 Z11.4931
N3097 X18.4008 Y24.7055 Z11.7134
N3098 X17.9662 Y22.668 Z11.9865
N3099 X17.359 Y20.7304 212.368
N3100 X16.3519 Y19.0175 Z13.0008
N3101 X15.093 Y17.5535 Z13.7918
N3102 X13.6985 Y16.1909 Z14.668
N3103 X8.0245 Y11.115 Z18.2332
N3104 X6.6773 Y9.7494 719.0797
N3105 X6.6738 Y8.169 219.0819
N3106 X6.9474 Y6.2977 Z18.91
N3107 X6.8866 Y4.2118 718.9482
N3108 X6.8974 Y0 Z218.9414

N3109 X4.4564 714.5248

N3110 X4.4449 Y4.2118 Z14.5303
N3111 X4.5096 Y6.2977 Z14.4992
N3112 X4.2185 Y8.169 Z14.6393
N3113 X4.2222 Y9.7494 714.6376
N3114 X5.6557 Y11.115 Z13.9472
N3115 X11.6932 Y16.1909 Z11.0397
N3116 X13.1771 Y17.5535 Z210.3251
N3117 X14.5166 Y19.0175 Z9.68

N3118 X15.5882 Y20.7304 Z9.164
N3119 X16.2343 Y22.668 78.8528
N3120 X16.6968 Y24.7055 Z8.6301
N3121 X17.0698 Y26.7743 Z8.4505
N3122 X17.3543 Y28.8578 78.3135
N3123 X17.8989 Y35.1018 78.0512
N3124 X18.0023 Y37.1973 Z8.0014
N3125 X17.9647 Y39.2953 78.0195
N3126 X17.9704 Y43.4974 78.0167
N3127 X16.683 Z4.9086

N3128 X16.677 Y39.2953 74.9106
N3129 X16.7164 Y37.1973 Z4.8969
N3130 X16.6081 Y35.1018 74.9348
N3131 X16.0375 Y28.8578 75.1344
N3132 X15.7394 Y26.7743 75.2387
N3133 X15.3486 Y24.7055 Z5.3755
N3134 X14.8641 Y22.668 Z5.545
N3135 X14.1873 Y20.7304 Z5.7818
N3136 X13.0646 Y19.0175 76.1747
N3137 X11.6613 Y17.5535 76.6657
N3138 X10.1068 Y16.1909 Z7.2097
N3139 X3.7817 Y11.115 79.4229
N3140 X2.2799 Y9.7494 79.9484
N3141 X2.276 Y8.169 79.9498
N3142 X2.581 Y6.2977 79.8431
N3143 X2.5132 Y4.2118 79.8668
N3144 X2.5252 Y0 Z9.8626

N3145 X1.1282 75.0134

N3146 X1.1158 Y4.2118 Z5.0163
N3147 X1.1858 Y6.2977 75.0003
N3148 X0.8708 Y8.169 75.0722
N3149 X0.8748 Y9.7494 75.0713
N3150 X2.426 Y11.115 74.7172
N3151 X8.9591 Y16.1909 73.2261
N3152 X10.5648 Y17.5535 Z2.8596
N3153 X12.0142 Y19.0175 72.5288
N3154 X13.1739 Y20.7304 72.2641
N3155 X13.873 Y22.668 22.1045
N3156 X14.3734 Y24.7055 71.9903
N3157 X14.777 Y26.7743 71.8982
N3158 X15.0849 Y28.8578 71.8279
N3159 X15.6743 Y35.1018 Z1.6934
N3160 X15.7861 Y37.1973 Z1.6679
N3161 X15.7454 Y39.2953 Z1.6772
N3162 X15.7516 Y43.4974 71.6757
N3163 X15.1881 Z-1.641

N3164 X15.1818 Y39.2953 Z-1.6403
N3165 X15.2232 Y37.1973 Z-1.645
N3166 X15.1092 Y35.1018 Z-1.6321
N3167 X14.5085 Y28.8578 Z-1.5644
N3168 X14.1947 Y26.7743 Z-1.5291
N3169 X13.7833 Y24.7055 Z-1.4827
N3170 X13.2732 Y22.668 Z-1.4253
N3171 X12.5607 Y20.7304 Z-1.345
N3172 X11.3787 Y19.0175 Z-1.2118
N3173 X9.9013 Y17.5535 Z-1.0453
N3174 X8.2647 Y16.1909 Z-0.8609
N3175 X1.6057 Y11.115 Z-0.1106
N3176 X0.0246 Y9.7494 70.0675
N3177 X0.0206 Y8.169 20.068
N3178 X0.3416 Y6.2977 Z0.0318
N3179 X0.2702 Y4.2118 70.0398
N3180 X0.283 Y0 Z0.0384

N3181 X0 Z-5 .

N3182 X-0.0128 Y4.2118

N3183 X0.059 Y6.2977

N3184 X-0.264 Y8.169

N3185 X-0.2599 Y9.7494

N3186 X1.3311 Y11.115

N3187 X8.0323 Y16.1909

N3188 X9.6792 Y17.5535

N3189 X11.1659 Y19.0175

N3190 X12.3554 Y20.7304

N3191 X13.0725 Y22.668

N3192 X13.5858 Y24.7055

N3193 X13.9998 Y26.7743

N3194 X14.3156 Y28.8578

N3195 X14.9201 Y35.1018

N3196 X15.0348 Y37.1973

N3197 X14.9931 Y39.2953

N3198 X14.9995 Y43.4974

N3199 G00 742.764

N3200 M9

N3201 G90 GO0 G49 20 M5

N3202 X0 Y0

N3203 M30

N3204%
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Part program of the adopted (Subdivision algorithm)

N1 G17 G40 G80 G90
N2 T6 M6

N3 M3 S18000

N4 GO0 G54 X90. Y-10.
N5 G43 Z68. H6

N6 M8

N7 G00 Z44.8595

N8 GO1 Z42.3595 F143.2
N9 X90.007 ¥5.9216 F10000.0
N10 X89.8818 Y7.3961
N11 X90.3595 Y8.7803
N12 X89.9118 Y10.0666
N13 X88.6244 Y10.7569
N14 X85.8721 Y11.9494
N15 X84.5872 Y12.6131
N16 X83.3761 Y13.4794
N17 X82.338 Y14.5491
N18 X81.4732 Y15.7126
N19 X80.6452 Y16.9854
N20 X79.8961 Y18.2515
N21 X79.2059 Y19.5302
N22 X78.5456 Y20.8836
N23 X77.9587 Y22.2375
N24 X76.9398 Y25.0183
N25 X75.6179 Y29.2512
N26 X75.2323 Y30.6596
N27 X74.9888 Y32.1135
N28 X74.9362 Y33.5976
N29 X75.0166 Y38.04
N30 X75.0001 Y43.9498
N31 X74.9076

N32 X74.918 Y36.5818
N33 X74.8439 Y33.5976
N34 X74.8964 Y32.1135
N35 X75.1391 Y30.6596
N36 X75.9545 Y27.8362
N37 X76.8413 Y25.0183
N38 X77.8571 Y22.2375
N39 X78.4422 Y20.8836
N40 X79.1004 Y19.5302
N41 X79.7885 Y18.2515
N42 X80.5354 Y16.9854
N43 X81.3608 Y15.7126
N44 X82.2229 Y14.5491
N45 X83.2578 Y13.4794
N46 X84.4652 Y12.6131
N47 X85.7461 Y11.9494
N48 X88.4899 Y10.7569
N49 X89.7733 Y10.0666
N50 X90.2197 Y8.7803
N51 X89.7434 Y7.3961
N52 X89.8683 Y5.9216
N53 X89.8613 Y0

N54 X89.446

N55 X89.4529 Y5.9216
N56 X89.3292 Y7.3961
N57 X89.8011 Y8.7803
N58 X89.3588 Y10.0666
N59 X88.0873 Y10.7569
N60 X85.3689 Y11.9494
N61 X84.0998 Y12.6131
N62 X82.9036 Y13.4794
N63 X81.8783 Y14.5491
N64 X81.0242 Y15.7126
N65 X80.2064 Y16.9854
N66 X79.4664 Y18.2515
N67 X78.7847 Y19.5302
N68 X78.1326 Y20.8836
N69 X77.553 Y22.2375
N70 X76.5466 Y25.0183
N71 X75.241 Y29.2512
N72 X74.8601 Y30.6596

N5274 X19.2228 Y30.6596 212.7963
N5275 X18.5254 Y27.8362 Z13.2237
N5276 X17.7668 Y25.0183 Z13.6885
N5277 X16.8981 Y22.2375 Z14.2209
N5278 X16.3976 Y20.8836 Z14.5275
N5279 X15.8347 Y19.5302 Z14.8725
N5280 X15.2462 Y18.2515 715.2331
N5281 X14.6074 Y16.9854 Z15.6246
N5282 X13.9015 Y15.7126 216.0572
N5283 X13.1641 Y14.5491 716.5091
N5284 X12.279 Y13.4794 Z17.0514

N5285 X11.2464 Y12.6131 Z17.6843

Quintic Uniform B-spline technique:

N5286 X10.1508 Y11.9494 718.3556
N5287 X7.8041 Y10.7569 Z219.7937
N5288 X6.7064 Y10.0666 Z220.4663
N5289 X6.3246 Y8.7803 Z20.7003
N5290 X6.732 Y7.3961 Z20.4507
N5291 X6.6252 Y5.9216 7220.5161
N5292 X6.6312 Y0 Z20.5124

N5293 X4.9047 Z17.4296

N5294 X4.8985 Y5.9216 717.4328
N5295 X5.01 Y7.3961 Z217.3759
N5296 X4.5844 Y8.7803 Z17.5928
N5297 X4.9833 Y10.0666 Z17.3895
N5298 X6.1304 Y10.7569 Z16.805
N5299 X8.5827 Y11.9494 715.5555
N5300 X9.7275 Y12.6131 Z14.9722
N5301 X10.8067 Y13.4794 Z14.4224
N5302 X11.7316 Y14.5491 713.9511
N5303 X12.5021 Y15.7126 Z13.5585
N5304 X13.2399 Y16.9854 713.1826
N5305 X13.9074 Y18.2515 712.8425
N5306 X14.5223 Y19.5302 212.5291
N5307 X15.1106 Y20.8836 212.2294
N5308 X15.6336 Y22.2375 Z211.9629
N5309 X16.5414 Y25.0183 Z11.5004
N5310 X17.7192 Y29.2512 710.9002
N5311 X18.0629 Y30.6596 210.7252
N5312 X18.2798 Y32.1135 Z10.6146
N5313 X18.3266 Y33.5976 210.5908
N5314 X18.255 Y38.04 710.6273
N5315 X18.2697 Y43.9498 710.6198
N5316 X17.2835 Z8.4805

N5317 X17.2739 Y36.5818 Z8.4845
N5318 X17.3425 Y33.5976 Z8.4561
N5319 X17.294 Y32.1135 78.4762
N5320 X17.069 Y30.6596 Z8.5694
N5321 X16.3134 Y27.8362 Z8.8824
N5322 X15.4915 Y25.0183 79.2228
N5323 X14.5501 Y22.2375 79.6128
N5324 X14.0079 Y20.8836 Z29.8374
N5325 X13.3979 Y19.5302 Z10.09
N5326 X12.7602 Y18.2515 710.3541
N5327 X12.0681 Y16.9854 710.6408
N5328 X11.3032 Y15.7126 210.9577
N5329 X10.5042 Y14.5491 711.2886
N5330 X9.5452 Y13.4794 711.6859
N5331 X8.4262 Y12.6131 Z12.1494
N5332 X7.2391 Y11.9494 712.6411
N5333 X4.6963 Y10.7569 Z13.6943
N5334 X3.5069 Y10.0666 214.187
N5335 X3.0933 Y8.7803 Z14.3583
N5336 X3.5346 Y7.3961 Z14.1755
N5337 X3.4189 Y5.9216 Z14.2234
N5338 X3.4254 Y0 Z14.2208

N5339 X2.2025 710.9058

N5340 X2.1958 Y5.9216 Z210.9079
N5341 X2.3149 Y7.3961 710.8692
N5342 X1.8605 Y8.7803 Z11.0169
N5343 X2.2864 Y10.0666 210.8785
N5344 X3.5108 Y10.7569 Z710.4807
N5345 X6.1283 Y11.9494 79.6302
N5346 X7.3503 Y12.6131 Z9.2331
N5347 X8.5022 Y13.4794 78.8589
N5348 X9.4894 Y14.5491 78.5381
N5349 X10.3119 Y15.7126 Z8.2708
N5350 X11.0994 Y16.9854 Z8.015
N5351 X11.8119 Y18.2515 Z7.7835
N5352 X12.4683 Y19.5302 Z7.5702
N5353 X13.0962 Y20.8836 Z7.3662
N5354 X13.6544 Y22.2375 Z7.1848
N5355 X14.6234 Y25.0183 Z6.8699
N5356 X15.8806 Y29.2512 Z6.4615
N5357 X16.2474 Y30.6596 Z6.3423
N5358 X16.4789 Y32.1135 Z6.2671
N5359 X16.529 Y33.5976 Z6.2508
N5360 X16.4525 Y38.04 Z6.2756
N5361 X16.4682 Y43.9498 76.2705
N5362 X15.8288 Z4.0034

N5363 X15.8186 Y36.5818 Z4.0058
N5364 X15.8909 Y33.5976 Z3.9885
N5365 X15.8398 Y32.1135 Z4.0007
N5366 X15.6031 Y30.6596 Z4.0576
N5367 X14.8078 Y27.8362 Z4.2485
N5368 X13.9427 Y25.0183 Z4.4562
N5369 X12.9519 Y22.2375 Z4.6941
N5370 X12.3812 Y20.8836 Z4.8311
N5371 X11.7392 Y19.5302 Z4.9852
N5372 X11.0681 Y18.2515 Z5.1463

N5373 X10.3396 Y16.9854 75.3212
N5374 X9.5346 Y15.7126 75.5145
N5375 X8.6936 Y14.5491 75.7164
N5376 X7.6843 Y13.4794 75.9587
N5377 X6.5066 Y12.6131 Z6.2415
N5378 X5.2572 Y11.9494 76.5414
N5379 X2.581 Y10.7569 Z7.1839
N5380 X1.3291 Y10.0666 Z7.4844
N5381 X0.8938 Y8.7803 Z7.589
N5382 X1.3583 Y7.3961 Z7.4774
N5383 X1.2365 Y5.9216 Z7.5067
N5384 X1.2434 Y0 Z7.505

N5385 X0.554 74.0396

N5386 X0.5471 Y5.9216 Z24.0406
N5387 X0.6708 Y7.3961 74.0211
N5388 X0.1989 Y8.7803 Z24.0958
N5389 X0.6412 Y10.0666 Z4.0257
N5390 X1.9127 Y10.7569 Z3.8244
N5391 X4.6311 Y11.9494 73.3938
N5392 X5.9002 Y12.6131 Z3.1928
N5393 X7.0964 Y13.4794 73.0033
N5394 X8.1217 Y14.5491 72.841
N5395 X8.9758 Y15.7126 Z2.7057
N5396 X9.7936 Y16.9854 72.5761
N5397 X10.5336 Y18.2515 Z2.4589
N5398 X11.2153 Y19.5302 72.351
N5399 X11.8674 Y20.8836 Z2.2477
N5400 X12.447 Y?22.2375 Z2.1559
N5401 X13.4534 Y25.0183 Z1.9965
N5402 X14.759 Y29.2512 71.7897
N5403 X15.1399 Y30.6596 Z1.7294
N5404 X15.3804 Y32.1135 71.6913
N5405 X15.4323 Y33.5976 Z1.6831
N5406 X15.353 Y38.04 Z1.6956
N5407 X15.3693 Y43.9498 71.693
N5408 X15.0924 Z-0.6462

N5409 X15.082 Y36.5818 Z-0.6454
N5410 X15.1561 Y33.5976 Z-0.6512
N5411 X15.1036 Y32.1135 Z-0.6471
N5412 X14.8609 Y30.6596 Z-0.628
N5413 X14.0455 Y27.8362 Z-0.5638
N5414 X13.1587 Y25.0183 Z-0.494
N5415 X12.1429 Y22.2375 Z-0.4141
N5416 X11.5578 Y20.8836 Z-0.368
N5417 X10.8996 Y19.5302 Z-0.3162
N5418 X10.2115 Y18.2515 Z-0.2621
N5419 X9.4646 Y16.9854 Z-0.2033
N5420 X8.6392 Y15.7126 Z-0.1383
N5421 X7.7771 Y14.5491 Z-0.0705
N5422 X6.7422 Y13.4794 70.011
N5423 X5.5348 Y12.6131 Z0.106
N5424 X4.2539 Y11.9494 70.2068
N5425 X1.5101 Y10.7569 Z0.4227
N5426 X0.2267 Y10.0666 Z0.5237
N5427 X-0.2197 Y8.7803 Z0.5589
N5428 X0.2566 Y7.3961 70.5214
N5429 X0.1317 Y5.9216 Z0.5312
N5430 X0.1387 Y0 20.5307

N5431 X0 Z-3.

N5432 X-0.007 Y5.9216

N5433 X0.1182 Y7.3961

N5434 X-0.3595 Y8.7803

N5435 X0.0882 Y10.0666

N5436 X1.3756 Y10.7569

N5437 X4.1279 Y11.9494

N5438 X5.4128 Y12.6131

N5439 X6.6239 Y13.4794

N5440 X7.662 Y14.5491

N5441 X8.5268 Y15.7126

N5442 X9.3548 Y16.9854

N5443 X10.1039 Y18.2515

N5444 X10.7941 Y19.5302

N5445 X11.4544 Y20.8836

N5446 X12.0413 Y22.2375

N5447 X13.0602 Y25.0183

N5448 X14.3821 Y29.2512

N5449 X14.7677 Y30.6596

N5450 X15.0112 Y32.1135

N5451 X15.0638 Y33.5976

N5452 X14.9834 Y38.04

N5453 X14.9999 Y43.9498

N5454 GO0 Z44.8595

N5455 M9

N5456 G90 GO0 G49 Z0 M5

N5457 X0 Y0

N5458 M30

N5459 %
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