Figure 1 : &; ; are denoted ¢; j; lines might not be as straight as they appear.
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0.1 Preliminary

Thoughout the text R is a real closed field. When we write "homeomorphic”, we mean ”semi-algebraically

homeomorphic”.

Proposition 1 (1.4.6). Let X = (X1,...,X,) and f(X,Y),..., fs(X,Y) be polynomials in n + 1 variables,
ranging over R with coefficients in Z and w € W, 4, where q is the mazimum degree in'Y of the s polynomials.
There exists a boolean combination B, (X) of polynomial equations and inequalities in the variables X =
(X1, ..., Xp) with coefficients in Z, so that for every x € R™, we have

B,(z)=T = SIGNg[f1(z,Y), ..., fs(z,Y)] = w.

Proposition 2 (2.1.7). Semi-algebraic subsets of R are exactly the finite unions of points and open intervals
(bounded or unbounded).

Proposition 3 (2.2.4). Let ®(x1,...,z,) be a first-order formula of the language of ordered fields, with

parameters in R and free variables x1,...,x,. Then {x € R™ | ®(x) = T} is a semi-algebraic set.

Definition 1 (2.2.5). Let A C R™ and B C R™ be two semi-algebraic sets. A mapping f: A — B is
semi-algebraic if its graph is semi-algebraic in R,

0.2 Decomposition of semi-algebraic sets 1

A semi-algebraic set S C R™ is the intersection and union of sets of the form {z € R" | f(x)*0}, where f(X)
is a polynomial in n variables X = (X, ..., X,;) with coefficients in R, and #* stands for = or <. Our goal
is to show, that S is the disjoint union of finitely many subsets of R™ each homeomorphic to a hypercube
10, 1[¢C R? for some d € Ny (]0,1[° stands for {0}). The approach is almost of constructive nature.
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Figure 2 : Exciting implicit plot of f(X,Y) = X;.

Example 1. Let X = (X3, X5) € R? and consider f(X,Y) = Y3—Y Xy—X;. The surface defined by f = 0 is
depicted in figure 1. Using f we may define semi-algebraic sets such as My = {(x1,22,y) € R? | f(z,y) %0},

where * stands for an operator out of =, <, <, ... .

Definition 2 (Slicing). Let f1(X,Y),..., fs(X,Y) be polynomials in the n 4+ 1 variables Xi,...,X,,Y
obtaining values in R with coefficients in R. A partition of R"™ into a finite number of semi-algebraic
sets Ay, ..., Ay, and, for ¢ = 1...m, a finite number [; (possibly zero) of continuous semi-algebraic functions
i1 <...<&y,, & Ay — R, so that

o forevery x € A;, {&1(), ..., & 1, (x) } is the set of roots of those polynomials among fi(z,Y), ..., fs(z,Y),

which are not identically zero, and
e for all z € A;, SIGNg[f1(z,Y), ..., fs(z,Y)] is invariant,
is called a slicing of fi, ..., fs and denoted by (A, (&.5)j=1..1,)i=1...m-
Later, in theorem 5, we will prove that such a slicing always exists.

Remark 1. Consider f(X,Y) = X; with n = s =1 as illustrated in figure 4. The second condition ensures
that R is partitioned into | — 0o, 0[, {0},]0, o], instead of simply R.

Theorem 4 (Decomposition I). Every semi-algebraic subset of R™ is the disjoint union of a finite number

of semi-algebraic sets, each of which is homeomorphic to an open hypercube |0, 1[*C R? for some d € Ny.

Proof. By induction on n. The base case n = 1 is clear, since by proposition 2 every semi-algebraic subset
of R is the union of a finite number of points and open intervals. Sets which have a non-empty intersection,
can be joined to points or open intervals, until we are left with pairwise disjoint sets, each homeomorphic to
{0} or ]O, 1].

Assume claim proved up to n. Let S C R"*! be semi-algebraic, given by a boolean combination of sign
conditions on the polynomials f1(X,Y), ..., fs(X,Y") with coefficients in R sliced into (A, (& ;)j=1...1; )i=1...m-

We can write S as the union of sets that are either
e the graph of & ; ~ A;, or
e a slice ]Ei,jagi,j-‘rl[:: {(I,y) € A xR | EZJ(IE) <y < §i7j+1(x)} ~ A; X ]0,1[, for 5 = 0...l; while
setting &; 0 = —oo and & ;,+1 = oo over A;.

Either case defines a semi-algebraic set in R"*!. There is only a finite number of those. Since all A; are
semi-algebraic, then by assumption, each A; is the disjoint union of a finite number of semi-algebraic sets,
each homeomorphic to an open hypercube ]0,1[C R? for some d € Ny. Consequently, we easily construct

the required sets of the claim. O
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Figure 3 : Adding the 8 non-vanishing derivatives of f from example 3 with respect to Y to the list of
polynomials results in a finer partition, which finally slices f.

Remark 2. The claim "], ;,& j+1[ ~ A; x ]0,1[” follows by constructing explicitely a homeomorphism
he 1&g, &g+l — A x 10,1],

requiring &; ; # & j+1 everywhere, and both functions &4 : A; — R being continuous. The proof uses for

example a continuous bijective function g: R =] — 0o, 00[ — 10, 1[ given by
y++/1+y2
9(y) == ——F——
21442

Theorem 5 (Existence of slicing). A slicing as defined in definition 2, always exists.

Proof. For the moment, assume that the coefficients of the polynomials f1(X,Y),..., fs(X,Y) are from Z,
with ¢ being the maximum degree in Y of the fi.’s. Let w € W, ;. According to Proposition 1.4.6, there exists
a boolean combination B, (X) of polynomial equations and inequalities in the variables X = (X1, ..., X,,)

with coefficients in Z, so that for every x € R™, we have
B,(z)=T — SIGNg[f1(z,Y), ..., fs(,Y)] = w.

To partition R" into A; we loop over all w € Wy 4, and if A, := {x € R" | B,(x)} # @ we make A, a set
of the partition. There are only finitely many of those, say A;—1..». Then each A; is semi-algebraic and
disjoint to all other A;.;. Together the A;—;. ., cover R", thus they form a finite partition of R".

Example 2. Again, consider f(X1,Y) = X; with n = s = 1. The maximum degree in Y is ¢ = 0. Letting
w range over Wy o = {(—1), (0), (1)}, we obtain the partition | — o0, 0[, {0}, ]0, co[.

Example 3 (Pathology). Let f(X1,Y) = (X1 — (Y —1)?)?(X1+(Y +1)?)?, we yield that SIGNg[f(z,Y)] =
(10101) for all # € R, thus R is partitioned into R. But it is impossible to find two continuous semi-
algebraic functions &; < & defined on R giving the roots of f(x,Y’). The subdivision of the domain into

] — 00,01,{0},]0, 0o[ would work, which is clear from figure 3.

We continue with the proof of theorem 5. The previous example motivates the necessity of adding the
non-vanishing derivatives of each f1, ..., fs with respect to Y to the list of polynomials. In the following we

will assume that f1, ..., fs is stable under derivation with respect to Y.
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SIGNRg[f1(z,Y), ..., fs(x,Y)] is constant for all z € A;, then there is a number I; < sq so that the polynomials
among f1(z,Y), ..., fs(z,Y) that are not identical to zero have together I; roots &; 1(z) < ... < &, (x). The
graph of §; ; :4; — R is

{(z,y) € Ay x R | I(y1..y1,) € RY [H fr(z, 1) =...= ka(;zc7yli) =0and y; <..<uy, and y; =y|}.
k k
According to proposition 2.2.4 and definition 2.2.5 &; ; is a semi-algebraic mapping.
Let for a fixed 2’ € A; be fy, (2,Y), ..., fp, (z',Y) polynomials that have simple zero in §;1(z') < ... <

&i1,(2). These polynomials exist, because we have previously added the Y-derivatives. The inequality

qu (xlv fi,q(x/) - e)qu (x/a gi,q(x/) + 6) <0

holds for € > 0 small enough and all ¢ = 1...[;. The inequality remains satisfied when substituting for =’
an z out of a small enough environment of 2’ in R™. Such an environment can be established so that the
inequality holds for all ¢ = 1...[; simultaneously, which proves that the &; ; are continous.

Functions &; ; that do not give roots of polynomials of the initial family are removed.

Now, let the coefficients of f1(X,Y), ..., fs(X,Y) be in R. We perform the following transformation [Lemma
2.3.2]: Each coefficient becomes a new variable, we design polynomials fi(A, X,Y), ..., fs(A, X,Y) with
coefficients in Z, so that, if a = (ay, ..., a.) € R€ is the concatenation of the coefficients of all the polynomials
fr=1..s, the identity fp(a,X,Y) = fx(X,Y) holds for all £ = 1...s. Proposition 1.4.6 applies to the new
FAAXY), o fo(A, X)Y): Letw € Ws,q, where g is the maximum degree in Y of the s polynomials. There
exists a boolean combination B, (A4, X) of polynomial equations and inequalities in the variables (A, X) with

coefficients in Z, so that for every (a,z) € R°T™", we have

B,(a,z) =T — SIGNg[fi(a,z,Y), ..., fs(a,2,Y)] = w.

In our construction above simply substitute B,,(X) = B, (a, X). This concludes the proof. O

0.3 Connectedness; decomposition of semi-algebraic sets 11

Our goal is to show that a semi-algebraic set S C R™ is the disjoint union of a finite number of semi-
algebraically connected semi-algebraic sets C1, ..., Cs, which are both open and closed in S.
We establish the topological space (R™, ), where the collection of open sets O, with {R", @} C O, is

generated by finite intersections and arbitrary unions of sets of the form
Br(z) ={y e R" | [ly—«l[<r},  weR" reRs,
with the standard norm, or, for n = 1 equivalently generated by
| —oo,r| and Jr,oo]  VreR.
The closure of set S C R" is defined as S := (\{AC R" | S C Aand R"\ A € O}.

Example 4. In (R = Ry4,O) the set P_ = UreR<,,] — 00, r|[ is open. The complement of P_ is P, =
R\ P_ = U,ep. Ir,oc] is open as well. Because P~ NP, = @ and P~ U P, = R but P~ # R and
P_ # @ = R is not connected according to the standard definition of connectedness. P_ and P, are
closed but not semi-algebraic in Rgg4.

In R(X)" the set {f e R(X)" | Ir € Rr >0 and f > r} is a closed and open set.

Example 4 motivates the following definition for connectedness.



Figure 4 : Left: decomposition B;—;.. 5, intermediate: B; N Bj # @, right: equivalence relation

Definition 3 (Connectedness). A semi-algebraic subset S C R™ is semi-algebraic connected in (R™, Q) if

for every pair of semi-algebraic sets F; and F» open in (S, O N S), one has
Nk =0 U, =5 = Fi=Sor I} =02.
In the sequel: ”connected” means ”semi-algebraically connected”.
Remark 3. Let f be a semi-algebraic continous function. The image f(C') of a connected set C' is connected.
Proposition 6. An open hypercube 10,1[2C R? is connected.

Proof. For d = 1, ]0,1[C R is connected. Take semi-algebraic sets Fj, F5 C]0,1[ and open in 0, 1] with
FiNFy, = @ and F1UF, =|0,1[. F; semi-algebraic and open implies by proposition 2.1.7, that Fy = (J"]a;, b;[
for appropriate a;,b; € [0,1]. Fy has to be the complement of Fy in ]0, 1[, i.e. Fy =()"]0,a;] U [b;, 1] and F
open implies Fy =|0, 1 or empty.

Now let d > 1: Assume "not”, then there exist open, non-empty Fj, F; C R? that partition ]0,1[*C R9.
Choose 1 € Fy and z2 € F3. Denote with h the homeomorphism h(A) = Az; + (1 — A)zg, that maps
10, 1] bijectively to the segment A :=]z1,x2[. With F] = AN F; and Fj = AN Fy the set A = h(]0,1]) is

disconnected - a contradiction to remark 3. O

Theorem 7 (Decomposition II). Every semi-algebraic subset S C R™ is the disjoint union of a finite
number of connected semi-algebraic sets Cy, ..., Cs, which are both closed and open in S. The C4,...,Cs are

called the semi-algebraically connected components of S.

Proof. Denote with By, ..., B, the finite partition of S into semi-algebraic sets, B; homeomorphic to 0, 1[

for some d. Consider the equivalence relation generated by

Let there be s equivalence classes and C} be the union of all B; in the k-th class. The C} are semi-algebraic
and open in S. Also, they form another partition of S. Suppose C; = Fy U F; for disjoint, semi-algebraic
Fy, F5 open in C. Since each B; is connected,

B, C Cy, = B; C Fy or B; C F5.

If B; C Fy (resp. Fy) and B; N Bj # @ = B; C Fy (resp. F3). According to the definition of the Cj, we
have Ck:Fl or Ok—:FQ. L]
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