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Figure 1 : ξi,j are denoted ci,j ; lines might not be as straight as they appear.
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0.1 Preliminary

Thoughout the text R is a real closed field. When we write ”homeomorphic”, we mean ”semi-algebraically
homeomorphic”.

Proposition 1 (1.4.6). Let X = (X1, ..., Xn) and f1(X, Y ), ..., fs(X,Y ) be polynomials in n + 1 variables,
ranging over R with coefficients in Z and ω ∈ Ws,q, where q is the maximum degree in Y of the s polynomials.
There exists a boolean combination Bω(X) of polynomial equations and inequalities in the variables X =
(X1, ..., Xn) with coefficients in Z, so that for every x ∈ Rn, we have

Bω(x) = > ⇐⇒ SIGNR[f1(x, Y ), ..., fs(x, Y )] = ω.

Proposition 2 (2.1.7). Semi-algebraic subsets of R are exactly the finite unions of points and open intervals
(bounded or unbounded).

Proposition 3 (2.2.4). Let Φ(x1, ..., xn) be a first-order formula of the language of ordered fields, with
parameters in R and free variables x1, ..., xn. Then {x ∈ Rn | Φ(x) = >} is a semi-algebraic set.

Definition 1 (2.2.5). Let A ⊂ Rm and B ⊂ Rn be two semi-algebraic sets. A mapping f : A → B is
semi-algebraic if its graph is semi-algebraic in Rm+n.

0.2 Decomposition of semi-algebraic sets I

A semi-algebraic set S ⊂ Rn is the intersection and union of sets of the form {x ∈ Rn | f(x)∗0}, where f(X)
is a polynomial in n variables X = (X1, ..., Xn) with coefficients in R, and ∗ stands for = or <. Our goal
is to show, that S is the disjoint union of finitely many subsets of Rn each homeomorphic to a hypercube
]0, 1[d⊂ Rd for some d ∈ N0 (]0, 1[0 stands for {0}). The approach is almost of constructive nature.



2

Figure 2 : Exciting implicit plot of f(X, Y ) = X1.

Example 1. Let X = (X1, X2) ∈ R2 and consider f(X, Y ) = Y 3−Y X2−X1. The surface defined by f = 0 is
depicted in figure 1. Using f we may define semi-algebraic sets such as M# := {(x1, x2, y) ∈ R3 | f(x, y)∗0},
where ∗ stands for an operator out of =, <,≤, ... .

Definition 2 (Slicing). Let f1(X, Y ), ..., fs(X,Y ) be polynomials in the n + 1 variables X1, ..., Xn, Y

obtaining values in R with coefficients in R. A partition of Rn into a finite number of semi-algebraic
sets A1, ..., Am and, for i = 1...m, a finite number li (possibly zero) of continuous semi-algebraic functions
ξi,1 < ... < ξi,li , ξi,j : Ai → R, so that

• for every x ∈ Ai, {ξi,1(x), ..., ξi,li(x)} is the set of roots of those polynomials among f1(x, Y ), ..., fs(x, Y ),
which are not identically zero, and

• for all x ∈ Ai, SIGNR[f1(x, Y ), ..., fs(x, Y )] is invariant,

is called a slicing of f1, ..., fs and denoted by (Ai, (ξi,j)j=1...li)i=1...m.

Later, in theorem 5, we will prove that such a slicing always exists.

Remark 1. Consider f(X, Y ) = X1 with n = s = 1 as illustrated in figure 4. The second condition ensures
that R is partitioned into ]−∞, 0[, {0}, ]0,∞[, instead of simply R.

Theorem 4 (Decomposition I). Every semi-algebraic subset of Rn is the disjoint union of a finite number
of semi-algebraic sets, each of which is homeomorphic to an open hypercube ]0, 1[d⊂ Rd for some d ∈ N0.

Proof. By induction on n. The base case n = 1 is clear, since by proposition 2 every semi-algebraic subset
of R is the union of a finite number of points and open intervals. Sets which have a non-empty intersection,
can be joined to points or open intervals, until we are left with pairwise disjoint sets, each homeomorphic to
{0} or ]0, 1[.
Assume claim proved up to n. Let S ⊂ Rn+1 be semi-algebraic, given by a boolean combination of sign
conditions on the polynomials f1(X, Y ), ..., fs(X, Y ) with coefficients in R sliced into (Ai, (ξi,j)j=1...li)i=1...m.
We can write S as the union of sets that are either

• the graph of ξi,j ' Ai, or

• a slice ]ξi,j , ξi,j+1[:= {(x, y) ∈ Ai × R | ξi,j(x) < y < ξi,j+1(x)} ' Ai × ]0, 1[, for j = 0...li while
setting ξi,0 ≡ −∞ and ξi,li+1 ≡ ∞ over Ai.

Either case defines a semi-algebraic set in Rn+1. There is only a finite number of those. Since all Ai are
semi-algebraic, then by assumption, each Ai is the disjoint union of a finite number of semi-algebraic sets,
each homeomorphic to an open hypercube ]0, 1[⊂ Rd for some d ∈ N0. Consequently, we easily construct
the required sets of the claim.
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Figure 3 : Adding the 8 non-vanishing derivatives of f from example 3 with respect to Y to the list of
polynomials results in a finer partition, which finally slices f .

Remark 2. The claim ”]ξi,j , ξi,j+1[ ' Ai × ]0, 1[” follows by constructing explicitely a homeomorphism

h : ]ξi,j , ξi,j+1[ → Ai × ]0, 1[,

requiring ξi,j 6= ξi,j+1 everywhere, and both functions ξ# : Ai → R being continuous. The proof uses for
example a continuous bijective function g : R =]−∞,∞[ → ]0, 1[ given by

g(y) :=
y +

√
1 + y2

2
√

1 + y2
.

Theorem 5 (Existence of slicing). A slicing as defined in definition 2, always exists.

Proof. For the moment, assume that the coefficients of the polynomials f1(X, Y ), ..., fs(X, Y ) are from Z,
with q being the maximum degree in Y of the fk’s. Let ω ∈ Ws,q. According to Proposition 1.4.6, there exists
a boolean combination Bω(X) of polynomial equations and inequalities in the variables X = (X1, ..., Xn)
with coefficients in Z, so that for every x ∈ Rn, we have

Bω(x) = > ⇐⇒ SIGNR[f1(x, Y ), ..., fs(x, Y )] = ω.

To partition Rn into Ai we loop over all ω ∈ Ws,q, and if Aω := {x ∈ Rn | Bω(x)} 6= ∅ we make Aω a set
of the partition. There are only finitely many of those, say Ai=1...m. Then each Ai is semi-algebraic and
disjoint to all other Aj 6=i. Together the Ai=1...m cover Rn, thus they form a finite partition of Rn.

Example 2. Again, consider f(X1, Y ) = X1 with n = s = 1. The maximum degree in Y is q = 0. Letting
ω range over W1,0 = {(−1), (0), (1)}, we obtain the partition ]−∞, 0[, {0}, ]0,∞[.

Example 3 (Pathology). Let f(X1, Y ) = (X1−(Y −1)2)2(X1+(Y +1)2)2, we yield that SIGNR[f(x, Y )] =
(1 0 1 0 1) for all x ∈ R, thus R is partitioned into R. But it is impossible to find two continuous semi-
algebraic functions ξ1 < ξ2 defined on R giving the roots of f(x, Y ). The subdivision of the domain into
]−∞, 0[, {0}, ]0,∞[ would work, which is clear from figure 3.

We continue with the proof of theorem 5. The previous example motivates the necessity of adding the
non-vanishing derivatives of each f1, ..., fs with respect to Y to the list of polynomials. In the following we
will assume that f1, ..., fs is stable under derivation with respect to Y .
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SIGNR[f1(x, Y ), ..., fs(x, Y )] is constant for all x ∈ Ai, then there is a number li ≤ sq so that the polynomials
among f1(x, Y ), ..., fs(x, Y ) that are not identical to zero have together li roots ξi,1(x) < ... < ξi,li(x). The
graph of ξi,j :Ai → R is

{(x, y) ∈ Ai ×R | ∃(y1...yli) ∈ Rli [
∏

k

fk(x, y1) = ... =
∏

k

fk(x, yli) = 0 and y1 < ... < yli and yj = y]}.

According to proposition 2.2.4 and definition 2.2.5 ξi,j is a semi-algebraic mapping.
Let for a fixed x′ ∈ Ai be fp1(x

′, Y ), ..., fpli
(x′, Y ) polynomials that have simple zero in ξi,1(x′) < ... <

ξi,li(x
′). These polynomials exist, because we have previously added the Y -derivatives. The inequality

fpq (x
′, ξi,q(x′)− ε)fpq (x

′, ξi,q(x′) + ε) < 0

holds for ε > 0 small enough and all q = 1...li. The inequality remains satisfied when substituting for x′

an x out of a small enough environment of x′ in Rn. Such an environment can be established so that the
inequality holds for all q = 1...li simultaneously, which proves that the ξi,q are continous.
Functions ξi,j that do not give roots of polynomials of the initial family are removed.
Now, let the coefficients of f1(X, Y ), ..., fs(X,Y ) be in R. We perform the following transformation [Lemma
2.3.2]: Each coefficient becomes a new variable, we design polynomials f̄1(A,X, Y ), ..., f̄s(A,X, Y ) with
coefficients in Z, so that, if ā = (ā1, ..., āc) ∈ Rc is the concatenation of the coefficients of all the polynomials
fk=1...s, the identity f̄k(ā, X, Y ) = fk(X, Y ) holds for all k = 1...s. Proposition 1.4.6 applies to the new
f̄1(A,X, Y ), ..., f̄s(A,X, Y ): Let ω ∈ Ws,q, where q is the maximum degree in Y of the s polynomials. There
exists a boolean combination B̄ω(A,X) of polynomial equations and inequalities in the variables (A,X) with
coefficients in Z, so that for every (a, x) ∈ Rc+n, we have

B̄ω(a, x) = > ⇐⇒ SIGNR[f1(a, x, Y ), ..., fs(a, x, Y )] = ω.

In our construction above simply substitute Bω(X) = B̄ω(ā, X). This concludes the proof.

0.3 Connectedness; decomposition of semi-algebraic sets II

Our goal is to show that a semi-algebraic set S ⊂ Rn is the disjoint union of a finite number of semi-
algebraically connected semi-algebraic sets C1, ..., Cs, which are both open and closed in S.
We establish the topological space (Rn,O), where the collection of open sets O, with {Rn,∅} ⊂ O, is
generated by finite intersections and arbitrary unions of sets of the form

Br(x) = {y ∈ Rn | ||y − x|| < r}, x ∈ Rn, r ∈ R>0,

with the standard norm, or, for n = 1 equivalently generated by

]−∞, r[ and ]r,∞[ ∀r ∈ R.

The closure of set S ⊂ Rn is defined as S̄ :=
⋂{A ⊂ Rn | S ⊂ A and Rn \A ∈ O}.

Example 4. In (R = Ralg,O) the set P− =
⋃

r∈R<π
] − ∞, r[ is open. The complement of P− is P+ =

R \ P− =
⋃

r∈R>π
]r,∞[ is open as well. Because P− ∩ P+ = ∅ and P− ∪ P+ = R but P− 6= R and

P− 6= ∅ =⇒ R is not connected according to the standard definition of connectedness. P− and P+ are
closed but not semi-algebraic in Ralg.
In R(X)∧ the set {f ∈ R(X)∧ | ∃r ∈ R r > 0 and f > r} is a closed and open set.

Example 4 motivates the following definition for connectedness.
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Figure 4 : Left: decomposition Bi=1...n, intermediate: Bi ∩ B̄j 6= ∅, right: equivalence relation

Definition 3 (Connectedness). A semi-algebraic subset S ⊂ Rn is semi-algebraic connected in (Rn,O) if
for every pair of semi-algebraic sets F1 and F2 open in (S,O ∩ S), one has

F1 ∩ F2 = ∅ F1 ∪ F2 = S =⇒ F1 = S or F1 = ∅.

In the sequel: ”connected” means ”semi-algebraically connected”.

Remark 3. Let f be a semi-algebraic continous function. The image f(C) of a connected set C is connected.

Proposition 6. An open hypercube ]0, 1[d⊂ Rd is connected.

Proof. For d = 1, ]0, 1[⊂ R is connected. Take semi-algebraic sets F1, F2 ⊂]0, 1[ and open in ]0, 1[ with
F1∩F2 = ∅ and F1∪F2 =]0, 1[. F1 semi-algebraic and open implies by proposition 2.1.7, that F1 =

⋃n]ai, bi[
for appropriate ai, bi ∈ [0, 1]. F2 has to be the complement of F1 in ]0, 1[, i.e. F2 =

⋂n]0, ai] ∪ [bi, 1[ and F2

open implies F2 =]0, 1[ or empty.
Now let d > 1: Assume ”not”, then there exist open, non-empty F1, F2 ⊂ Rd that partition ]0, 1[d⊂ Rd.
Choose x1 ∈ F1 and x2 ∈ F2. Denote with h the homeomorphism h(λ) = λx1 + (1 − λ)x2, that maps
]0, 1[ bijectively to the segment Λ :=]x1, x2[. With F ′1 = Λ ∩ F1 and F ′2 = Λ ∩ F2 the set Λ = h(]0, 1[) is
disconnected - a contradiction to remark 3.

Theorem 7 (Decomposition II). Every semi-algebraic subset S ⊂ Rn is the disjoint union of a finite
number of connected semi-algebraic sets C1, ..., Cs, which are both closed and open in S. The C1, ..., Cs are
called the semi-algebraically connected components of S.

Proof. Denote with B1, ..., Bn the finite partition of S into semi-algebraic sets, Bi homeomorphic to ]0, 1[d

for some d. Consider the equivalence relation generated by

Bi ∼ Bj ⇐⇒ Bi ∩ B̄j 6= ∅.

Let there be s equivalence classes and Ck be the union of all Bi in the k-th class. The Ck are semi-algebraic
and open in S. Also, they form another partition of S. Suppose Ck = F1 ∪ F2 for disjoint, semi-algebraic
F1, F2 open in Ck. Since each Bi is connected,

Bi ⊂ Ck =⇒ Bi ⊂ F1 or Bi ⊂ F2.

If Bi ⊂ F1 (resp. F2) and Bi ∩ B̄j 6= ∅ =⇒ Bj ⊂ F1 (resp. F2). According to the definition of the Ck, we
have Ck = F1 or Ck = F2.
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