

Figure 1 : $\xi_{i,j}$ are denoted $c_{i,j}$; lines might not be as straight as they appear.

... download this document from www.hakenberg.de

0.1 Preliminary

Thoughout the text R is a real closed field. When we write "homeomorphic", we mean "semi-algebraically homeomorphic".

Proposition 1 (1.4.6). Let $X = (X_1, ..., X_n)$ and $f_1(X, Y), ..., f_s(X, Y)$ be polynomials in n + 1 variables, ranging over R with coefficients in \mathbb{Z} and $\omega \in W_{s,q}$, where q is the maximum degree in Y of the s polynomials. There exists a boolean combination $\mathcal{B}_{\omega}(X)$ of polynomial equations and inequalities in the variables $X = (X_1, ..., X_n)$ with coefficients in \mathbb{Z} , so that for every $x \in R^n$, we have

 $\mathcal{B}_{\omega}(x) = \top \qquad \Longleftrightarrow \qquad SIGN_R[f_1(x,Y),...,f_s(x,Y)] = \omega.$

Proposition 2 (2.1.7). Semi-algebraic subsets of R are exactly the finite unions of points and open intervals (bounded or unbounded).

Proposition 3 (2.2.4). Let $\Phi(x_1, ..., x_n)$ be a first-order formula of the language of ordered fields, with parameters in R and free variables $x_1, ..., x_n$. Then $\{x \in R^n \mid \Phi(x) = \top\}$ is a semi-algebraic set.

Definition 1 (2.2.5). Let $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$ be two semi-algebraic sets. A mapping $f : A \to B$ is *semi-algebraic* if its graph is semi-algebraic in \mathbb{R}^{m+n} .

0.2 Decomposition of semi-algebraic sets I

A semi-algebraic set $S \subset \mathbb{R}^n$ is the intersection and union of sets of the form $\{x \in \mathbb{R}^n \mid f(x) * 0\}$, where f(X) is a polynomial in n variables $X = (X_1, ..., X_n)$ with coefficients in \mathbb{R} , and * stands for = or <. Our goal is to show, that S is the disjoint union of finitely many subsets of \mathbb{R}^n each homeomorphic to a hypercube $[0, 1[^d \subset \mathbb{R}^d \text{ for some } d \in \mathbb{N}_0 (]0, 1[^0 \text{ stands for } \{0\})$. The approach is almost of constructive nature.

Figure 2 : Exciting implicit plot of $f(X, Y) = X_1$.

Example 1. Let $X = (X_1, X_2) \in \mathbb{R}^2$ and consider $f(X, Y) = Y^3 - YX_2 - X_1$. The surface defined by f = 0 is depicted in figure 1. Using f we may define semi-algebraic sets such as $M_{\#} := \{(x_1, x_2, y) \in \mathbb{R}^3 \mid f(x, y) * 0\}$, where * stands for an operator out of $=, <, \leq, \ldots$.

Definition 2 (Slicing). Let $f_1(X, Y), ..., f_s(X, Y)$ be polynomials in the n + 1 variables $X_1, ..., X_n, Y$ obtaining values in R with coefficients in R. A partition of R^n into a finite number of semi-algebraic sets $A_1, ..., A_m$ and, for i = 1...m, a finite number l_i (possibly zero) of continuous semi-algebraic functions $\xi_{i,1} < ... < \xi_{i,l_i}, \xi_{i,j} : A_i \to R$, so that

- for every $x \in A_i$, $\{\xi_{i,1}(x), ..., \xi_{i,l_i}(x)\}$ is the set of roots of those polynomials among $f_1(x, Y), ..., f_s(x, Y)$, which are not identically zero, and
- for all $x \in A_i$, SIGN_R[$f_1(x, Y), ..., f_s(x, Y)$] is invariant,

is called a *slicing* of $f_1, ..., f_s$ and denoted by $(A_i, (\xi_{i,j})_{j=1...l_i})_{i=1...m}$.

Later, in theorem 5, we will prove that such a slicing always exists.

Remark 1. Consider $f(X, Y) = X_1$ with n = s = 1 as illustrated in figure 4. The second condition ensures that R is partitioned into $] - \infty, 0[, \{0\},]0, \infty[$, instead of simply R.

Theorem 4 (Decomposition I). Every semi-algebraic subset of \mathbb{R}^n is the disjoint union of a finite number of semi-algebraic sets, each of which is homeomorphic to an open hypercube $]0,1[^d \subset \mathbb{R}^d$ for some $d \in \mathbb{N}_0$.

Proof. By induction on n. The base case n = 1 is clear, since by proposition 2 every semi-algebraic subset of R is the union of a finite number of points and open intervals. Sets which have a non-empty intersection, can be joined to points or open intervals, until we are left with pairwise disjoint sets, each homeomorphic to $\{0\}$ or [0, 1[.

Assume claim proved up to n. Let $S \subset \mathbb{R}^{n+1}$ be semi-algebraic, given by a boolean combination of sign conditions on the polynomials $f_1(X, Y), ..., f_s(X, Y)$ with coefficients in R sliced into $(A_i, (\xi_{i,j})_{j=1...l_i})_{i=1...m}$. We can write S as the union of sets that are either

- the graph of $\xi_{i,j} \simeq A_i$, or
- a slice $]\xi_{i,j}, \xi_{i,j+1}[:= \{(x,y) \in A_i \times R \mid \xi_{i,j}(x) < y < \xi_{i,j+1}(x)\} \simeq A_i \times]0,1[$, for $j = 0...l_i$ while setting $\xi_{i,0} \equiv -\infty$ and $\xi_{i,l_i+1} \equiv \infty$ over A_i .

Either case defines a semi-algebraic set in \mathbb{R}^{n+1} . There is only a finite number of those. Since all A_i are semi-algebraic, then by assumption, each A_i is the disjoint union of a finite number of semi-algebraic sets, each homeomorphic to an open hypercube $]0,1[\subset \mathbb{R}^d$ for some $d \in \mathbb{N}_0$. Consequently, we easily construct the required sets of the claim.

Figure 3 : Adding the 8 non-vanishing derivatives of f from example 3 with respect to Y to the list of polynomials results in a finer partition, which finally slices f.

Remark 2. The claim " $]\xi_{i,j}, \xi_{i,j+1}[\simeq A_i \times]0,1[$ " follows by constructing explicitly a homeomorphism

$$h:]\xi_{i,j}, \xi_{i,j+1}[\rightarrow A_i \times]0, 1[$$

requiring $\xi_{i,j} \neq \xi_{i,j+1}$ everywhere, and both functions $\xi_{\#} : A_i \to R$ being continuous. The proof uses for example a continuous bijective function $g: R =] - \infty, \infty [\to]0, 1[$ given by

$$g(y) := \frac{y + \sqrt{1 + y^2}}{2\sqrt{1 + y^2}}.$$

Theorem 5 (Existence of slicing). A slicing as defined in definition 2, always exists.

Proof. For the moment, assume that the coefficients of the polynomials $f_1(X, Y), ..., f_s(X, Y)$ are from \mathbb{Z} , with q being the maximum degree in Y of the f_k 's. Let $\omega \in W_{s,q}$. According to Proposition 1.4.6, there exists a boolean combination $\mathcal{B}_{\omega}(X)$ of polynomial equations and inequalities in the variables $X = (X_1, ..., X_n)$ with coefficients in \mathbb{Z} , so that for every $x \in \mathbb{R}^n$, we have

$$\mathcal{B}_{\omega}(x) = \top \quad \iff \quad \operatorname{SIGN}_{R}[f_{1}(x, Y), ..., f_{s}(x, Y)] = \omega.$$

To partition \mathbb{R}^n into A_i we loop over all $\omega \in W_{s,q}$, and if $A_\omega := \{x \in \mathbb{R}^n \mid \mathcal{B}_\omega(x)\} \neq \emptyset$ we make A_ω a set of the partition. There are only finitely many of those, say $A_{i=1...m}$. Then each A_i is semi-algebraic and disjoint to all other $A_{j\neq i}$. Together the $A_{i=1...m}$ cover \mathbb{R}^n , thus they form a finite partition of \mathbb{R}^n .

Example 2. Again, consider $f(X_1, Y) = X_1$ with n = s = 1. The maximum degree in Y is q = 0. Letting ω range over $W_{1,0} = \{(-1), (0), (1)\}$, we obtain the partition $] - \infty, 0[, \{0\},]0, \infty[$.

Example 3 (Pathology). Let $f(X_1, Y) = (X_1 - (Y-1)^2)^2 (X_1 + (Y+1)^2)^2$, we yield that $\operatorname{SIGN}_R[f(x, Y)] = (1 \ 0 \ 1 \ 0 \ 1)$ for all $x \in R$, thus R is partitioned into R. But it is impossible to find two continuous semialgebraic functions $\xi_1 < \xi_2$ defined on R giving the roots of f(x, Y). The subdivision of the domain into $] - \infty, 0[, \{0\},]0, \infty[$ would work, which is clear from figure 3.

We continue with the proof of theorem 5. The previous example motivates the necessity of adding the non-vanishing derivatives of each $f_1, ..., f_s$ with respect to Y to the list of polynomials. In the following we will assume that $f_1, ..., f_s$ is stable under derivation with respect to Y.

SIGN_R[$f_1(x, Y), ..., f_s(x, Y)$] is constant for all $x \in A_i$, then there is a number $l_i \leq sq$ so that the polynomials among $f_1(x, Y), ..., f_s(x, Y)$ that are not identical to zero have together l_i roots $\xi_{i,1}(x) < ... < \xi_{i,l_i}(x)$. The graph of $\xi_{i,j} : A_i \to R$ is

$$\{(x,y) \in A_i \times R \mid \exists (y_1...y_{l_i}) \in R^{l_i} \ [\prod_k f_k(x,y_1) = ... = \prod_k f_k(x,y_{l_i}) = 0 \text{ and } y_1 < ... < y_{l_i} \text{ and } y_j = y]\}.$$

According to proposition 2.2.4 and definition 2.2.5 $\xi_{i,j}$ is a semi-algebraic mapping.

Let for a fixed $x' \in A_i$ be $f_{p_1}(x', Y), ..., f_{p_{l_i}}(x', Y)$ polynomials that have simple zero in $\xi_{i,1}(x') < ... < \xi_{i,l_i}(x')$. These polynomials exist, because we have previously added the Y-derivatives. The inequality

$$f_{p_q}(x',\xi_{i,q}(x') - \epsilon)f_{p_q}(x',\xi_{i,q}(x') + \epsilon) < 0$$

holds for $\epsilon > 0$ small enough and all $q = 1...l_i$. The inequality remains satisfied when substituting for x'an x out of a small enough environment of x' in \mathbb{R}^n . Such an environment can be established so that the inequality holds for all $q = 1...l_i$ simultaneously, which proves that the $\xi_{i,q}$ are continuos.

Functions $\xi_{i,j}$ that do not give roots of polynomials of the initial family are removed.

Now, let the coefficients of $f_1(X, Y), ..., f_s(X, Y)$ be in R. We perform the following transformation [Lemma 2.3.2]: Each coefficient becomes a new variable, we design polynomials $\bar{f}_1(A, X, Y), ..., \bar{f}_s(A, X, Y)$ with coefficients in \mathbb{Z} , so that, if $\bar{a} = (\bar{a}_1, ..., \bar{a}_c) \in R^c$ is the concatenation of the coefficients of all the polynomials $f_{k=1...s}$, the identity $\bar{f}_k(\bar{a}, X, Y) = f_k(X, Y)$ holds for all k = 1...s. Proposition 1.4.6 applies to the new $\bar{f}_1(A, X, Y), ..., \bar{f}_s(A, X, Y)$: Let $\omega \in W_{s,q}$, where q is the maximum degree in Y of the s polynomials. There exists a boolean combination $\bar{\mathcal{B}}_{\omega}(A, X)$ of polynomial equations and inequalities in the variables (A, X) with coefficients in \mathbb{Z} , so that for every $(a, x) \in R^{c+n}$, we have

$$\bar{\mathcal{B}}_{\omega}(a,x) = \top \quad \iff \quad \operatorname{SIGN}_{R}[f_{1}(a,x,Y),...,f_{s}(a,x,Y)] = \omega.$$

In our construction above simply substitute $\mathcal{B}_{\omega}(X) = \overline{\mathcal{B}}_{\omega}(\overline{a}, X)$. This concludes the proof.

0.3 Connectedness; decomposition of semi-algebraic sets II

Our goal is to show that a semi-algebraic set $S \subset \mathbb{R}^n$ is the disjoint union of a finite number of semialgebraically connected semi-algebraic sets $C_1, ..., C_s$, which are both open and closed in S.

We establish the topological space $(\mathbb{R}^n, \mathcal{O})$, where the collection of open sets \mathcal{O} , with $\{\mathbb{R}^n, \emptyset\} \subset \mathcal{O}$, is generated by finite intersections and arbitrary unions of sets of the form

$$B_r(x) = \{ y \in \mathbb{R}^n \mid ||y - x|| < r \}, \qquad x \in \mathbb{R}^n, \ r \in \mathbb{R}_{>0},$$

with the standard norm, or, for n = 1 equivalently generated by

$$]-\infty, r[$$
 and $]r, \infty[$ $\forall r \in R.$

The closure of set $S \subset \mathbb{R}^n$ is defined as $\overline{S} := \bigcap \{A \subset \mathbb{R}^n \mid S \subset A \text{ and } \mathbb{R}^n \setminus A \in \mathcal{O} \}.$

Example 4. In $(R = \mathbb{R}_{alg}, \mathcal{O})$ the set $P_{-} = \bigcup_{r \in R_{<\pi}}] - \infty, r[$ is open. The complement of P_{-} is $P_{+} = R \setminus P_{-} = \bigcup_{r \in R_{>\pi}}]r, \infty[$ is open as well. Because $P_{-} \cap P_{+} = \emptyset$ and $P_{-} \cup P_{+} = R$ but $P_{-} \neq R$ and $P_{-} \neq \emptyset \implies \mathbb{R}$ is not connected according to the standard definition of connectedness. P_{-} and P_{+} are closed but not semi-algebraic in \mathbb{R}_{alg} .

In $\mathbb{R}(X)^{\wedge}$ the set $\{f \in \mathbb{R}(X)^{\wedge} \mid \exists r \in \mathbb{R} \ r > 0 \text{ and } f > r\}$ is a closed and open set.

Example 4 motivates the following definition for connectedness.

Figure 4 : Left: decomposition $B_{i=1...n}$, intermediate: $B_i \cap \overline{B}_j \neq \emptyset$, right: equivalence relation

Definition 3 (Connectedness). A semi-algebraic subset $S \subset \mathbb{R}^n$ is semi-algebraic connected in $(\mathbb{R}^n, \mathcal{O})$ if for every pair of semi-algebraic sets F_1 and F_2 open in $(S, \mathcal{O} \cap S)$, one has

$$F_1 \cap F_2 = \varnothing$$
 $F_1 \cup F_2 = S$ \Longrightarrow $F_1 = S$ or $F_1 = \varnothing$

In the sequel: "connected" means "semi-algebraically connected".

Remark 3. Let f be a semi-algebraic continuus function. The image f(C) of a connected set C is connected.

Proposition 6. An open hypercube $[0, 1]^d \subset \mathbb{R}^d$ is connected.

Proof. For d = 1, $]0,1[\subset R$ is connected. Take semi-algebraic sets $F_1, F_2 \subset]0,1[$ and open in]0,1[with $F_1 \cap F_2 = \emptyset$ and $F_1 \cup F_2 =]0,1[$. F_1 semi-algebraic and open implies by proposition 2.1.7, that $F_1 = \bigcup^n]a_i, b_i[$ for appropriate $a_i, b_i \in [0,1]$. F_2 has to be the complement of F_1 in]0,1[, i.e. $F_2 = \bigcap^n]0, a_i] \cup [b_i,1[$ and F_2 open implies $F_2 =]0,1[$ or empty.

Now let d > 1: Assume "not", then there exist open, non-empty $F_1, F_2 \subset \mathbb{R}^d$ that partition $]0, 1[^d \subset \mathbb{R}^d$. Choose $x_1 \in F_1$ and $x_2 \in F_2$. Denote with h the homeomorphism $h(\lambda) = \lambda x_1 + (1 - \lambda)x_2$, that maps]0, 1[bijectively to the segment $\Lambda :=]x_1, x_2[$. With $F'_1 = \Lambda \cap F_1$ and $F'_2 = \Lambda \cap F_2$ the set $\Lambda = h(]0, 1[)$ is disconnected - a contradiction to remark 3.

Theorem 7 (Decomposition II). Every semi-algebraic subset $S \subset \mathbb{R}^n$ is the disjoint union of a finite number of connected semi-algebraic sets $C_1, ..., C_s$, which are both closed and open in S. The $C_1, ..., C_s$ are called the semi-algebraically connected components of S.

Proof. Denote with $B_1, ..., B_n$ the finite partition of S into semi-algebraic sets, B_i homeomorphic to $]0, 1[^d$ for some d. Consider the equivalence relation generated by

$$B_i \sim B_j \quad \iff \quad B_i \cap \bar{B}_j \neq \emptyset.$$

Let there be s equivalence classes and C_k be the union of all B_i in the k-th class. The C_k are semi-algebraic and open in S. Also, they form another partition of S. Suppose $C_k = F_1 \cup F_2$ for disjoint, semi-algebraic F_1, F_2 open in C_k . Since each B_i is connected,

$$B_i \subset C_k \implies B_i \subset F_1 \text{ or } B_i \subset F_2$$

If $B_i \subset F_1$ (resp. F_2) and $B_i \cap \overline{B}_j \neq \emptyset \Longrightarrow B_j \subset F_1$ (resp. F_2). According to the definition of the C_k , we have $C_k = F_1$ or $C_k = F_2$.

References:

J. Bochnak, M. Coste, M. Roy - Real Algebraic Geometry, Springer, SK 240 B664 R2