
Figure 1: Surface of genus 2 constructed from something like ~a1
~b1ā1b̄1~a2

~b2ā2b̄2.

Figure 2: Three non-isometric ways to endow a surface of genus 2 with the hyperbolic metric. Pics
courtesy of Deva Van Der Werf.
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The Fenchel-Nielsen Coordinates of Teichmüller Spaces

“The Riemann Moduli Problem is to describe the isomorphism classes of all Riemann surfaces in a given
topological class. Riemann solved the problem for simply connected Riemann surfaces: He found that
the only possibilities are the disk, the plane, and the Riemann sphere. In the case of doubly connected
Riemann surfaces, the problem is still not particularly difficult, although some technical complications
arise, and they suggest that the problem should be clarified. The moduli problem becomes interesting
for the more complicated Riemann surfaces. According to the Uniformization Theorem, these Riemann
surfaces are covered by the upper half-plane H, and therefore are hyperbolic. While studying the moduli
problem, Otto Teichmüller first proposed a modification of the moduli problem that gives rise to what
we now call Teichmüller space. The moduli space of a Riemann surface R is the space of isomorphism
classes of the complex structures on R; that is, the set of complex structures on R modulo the orientation
preserving homeomorphisms of R. The Teichmüller space of R is a refinement of the moduli space,
specifically the complex structures modulo homeomorphisms isotopic to the identity.” [K. Paur]

Riemann surfaces

A surface is by definition orientable. A Riemann surface is a surface R together with an conformal
structure, i.e. a complete atlas where all transition maps zβ ◦ z−1

α : zα(Uα ∪ Uβ) → C are holomorphic.
A conformal metric g on R in local coordinates is of the form λ2(z)dzdz̄.
Relevant examples of non compact surfaces carrying hyperbolic metric are D := {z ∈ C : |z| < 1} with
λ(z) = 2

1−|z|2 and isomorphic H := {z ∈ C : Im z > 0} with λ(z) = 1

Im z
. The maps z ∈ D 7→ i 1+z

1−z ∈ H

and z ∈ H 7→ z−i
z+i ∈ D are isometries.

The group of Möbius transformations is isomorphic to the multiplicative group of matrices
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Figure 3: Decomposition of surfaces of genus p ≥ 2 into Y -pieces. Pics courtesy of Jürgen Jost and Kathy
Paur, resp. A default Y -piece as a subset of C is to the right.

PSL(2,R) =
{(

a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
/ {± ( 1 0

0 1 )}, where each matrix defines an isometric trans-
formation of H via

(
a b
c d

)
(z) 7→ az+b

cz+d .
A Fuchsian model of a Riemann surface R is the subgroup Γ of Möbius transformations obtained from
the quotient Γ = H/R under a covering map H → R. Conversely, a properly discontinous subgroup Γ of
PSL(2,R) defines a Riemann surface via R = H/Γ. Some examples are shown in Figure 2.
A compact surface R with genus p is homeomorphic to p tori glued to a sphere. Hence the fundamental
group is π1(R) = (Z× Z)p with generators from ~a1

~b1ā1b̄1~a2
~b2 · · ·~ap

~bpāpb̄p.
R carries the hyperbolic metric if for all points x ∈ R there is an isometry φ : Ux → φ(Ux) ⊂ H between
open neighborhoods.
The moduli space M(R) of a Riemann surface is the set of hyperbolic metrics on the manifold R, where
(R, g1) ∼ (R, g2) if there is an isometry between them.
The Teichmüller space T (R) is the set of triples (R, g, f), where g denotes the hyperbolic metric on R

and f : R → R is a diffeomorphism under the following equivalence relation: (R, g1, f1) ∼ (R, g2, f2) if
there exists an isometry k, so that f2◦f−1

1 and k are homotopic. Recall, that two maps f0, f1 : R → R are
homotopic, if there is a continuous function F : [0, 1]×R → R with F (0, ·) = f0(·) and F (1, ·) = f1(·).

Surface R π1(R) M(R) T (R)
H {0} {0} {0}
Y (see below) Z2 R3

+/S3 R3
+

Torus Z2 H/PSL(2,Z) R+ × R(= H)
genus p ≥ 2 Z2p · · · R3p−3

+ × R3p−3

Hyperbolic Y -pieces

Motivated by Figure 3 we aim to decompose a surface of genus p ≥ 2 into subsets each isometric to a
Y -piece with a suitable hyperbolic metric. For further considerations we choose the embedding
Y := {z ∈ C : |z| ≤ 1, 1

4 ≤ |z − 1
2 |, 1

4 ≤ |z + 1
2 |}. Let Y carry a hyperbolic metric, so that the three

boundary curves c1, c2, c3 are geodesics.

Lemma 1. For each i 6= j, there exists a unique shortest geodesic arc cij connecting ci with cj . The arc
cij meets ci with cj orthogonally and has no self-intersections. Obviously cij = cji, but different cij do
not intersect.

Incomplete proof: From Schüth’s DiffGeo.II we have the intuition, that the distance function
d : ci×cj → R is locally convex and the shortest connecting path between two suitable points is a smooth
geodesic path cij .
No self-intersections: Suppose that there exists 0 < t1 < t2 < 1 with cij(t1) = cij(t2). Then c′ij =
cij |[0,t1] ∪ cij |[t2,1] defines a curve connecting ci and cj , which is even shorter that cij . A contradiction.
Orthogonality: By the same argument as in Euclidean geometry, cij has to meet ci and cj orthogonally,
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Figure 4: Surface of genus 3 composed by Y -pieces I,...,IV. a, b, ..., f is a basis of the loop group π1.

Figure 5: Surface of Figure 4 embedded in D as the disjoint union of Y -pieces I,...,IV.

as otherwise one could construct an even shorter curve joining ci and cj .
No pairwise intersections: Suppose there exist t1, t2 ∈ (0, 1) with cij(t1) = cik(t2) for j 6= k. As-
sume wlog len(cij |[0,t1]) ≤ len(cik|[0,t2]). Then c′ik = cij |[0,t1] ∪ cik|[t2,1] connects ci and ck and satisfies
len(c′ik) ≤ len(cik), hence is a shortest curve in its class, and is a smooth geodesic. Hence the initial
curves cij and cik share tangent directions in the intersection point. A contradiction to the uniqueness
of geodesics. Similarly, cij(0) 6= cik(0) since they start at a right angle to ci.
Uniqueness: Suppose there exists different curves cij and c′ij connecting ci and cj . By the above consid-
erations, we may assume they are disjoint. Therefore, there exists a geodesic quadrilateral in Y with all
right angles. A contradiction to Gauss-Bonnet: A geodesic polygon P in H with k vertices and interior
angles αi has area(P ) = (k − 2)π −∑

αi.

Lemma 2. For each λ1, λ2, λ3 > 0, there exists a unique hyperbolic geodesic hexagon with sequent sides
a1, b1, a2, b2, a3, b3 with len(ai) = λi, and all right interior angles.

Proof. See Jürgen Jost Lemma 4.3.2 on pages 176-179.

Theorem 3. The hyperbolic structure of a Y is uniquely determined by the lengths of c1, c2, c3. For any
l1, l2, l3 > 0, there exists a Y with boundary curves possessing these lengths.

Proof. We split a given Y into two hexagons along the geodesic arcs c12, c23, c31 of Lemma 1. Both
hexagons are isometric by Lemma 2. Hence, the three remaining sides have lengths l1

2 , l2
2 , l3

2 . Again by
Lemma 2, these hexagons are uniquely determined from l1, l2, l3 and so is their union Y .
Conversely, for fixed l1, l2, l3 > 0, glue two unique isometric hexagons with lengths l1

2 , l2
2 , l3

2 of alternating
sides along the three remaining sides to form a Y .
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Figure 6: The decomposition is not unique?

Figure 7: Visualization of Dehn twist by Kathy Paur.

Decomposition of surfaces of genus p ≥ 2

We employ a decomposition of compact surfaces that does not generalize to the sphere or the torus,
surfaces of genus < 2. Hence from hereon, let R = H/Γ be a (compact) Riemann surface with genus p ≥ 2.

Using combinatorics, cutting R along suitable 3p − p non-intersecting curves, the surface decomposes
into 2p − p Y -pieces. The following theorem shows that we might as well cut along geodesics ck with
k = 1, ..., 3p− 3, but neither reference assures, that we may cut along pairwise disjoint geodesics ck.

Theorem 4. Each closed curve γ : S1 → R is homotopic to a unique closed geodesic c : S1 → R. If γ

has no self-intersections, then c is likewise free from self-intersections.

Proof. Kathy Paur gives an elegant and rigorous proof.

As seen in the previous section, the lengths l1, l2, ..., l3p−3 of the ck determine the hyperbolic metrics
of the Y -pieces. When gluing the pieces back together, we notice that we may choose phase angles
α1, α2, ..., α3p−3. As in the discussion of the hyperbolic torus, two phase displacements αk, βk result in
isometric surfaces R ⇐⇒ αk − βk ∈ 2πZ, note Figure 7. Furthermore, for two isometric surfaces there
can only be an isometry homotopic to the identity, if αk = βk.
Overall, for hyperbolic metrics on a surface of genus p ≥ 2 modulo homeomorphisms isotopic to the
identity, there are 2(3p−3) degrees of freedom in the coordinate space by Fenchel-Nielsen R3p−3

+ ×R3p−3,
which thus can be shown1 is homeomorphic to T (R) = Tp.
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