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Figure 1 : phase diagram and depicted scenario of airflow through chimney with flap

Figure 2 : elastic body colliding with flat surface
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0.1 Linear Complementary Problem

Example 1 (Airflow through chimney). Consider the scenario in figure 1, we denote

p∆ = pressure excess above door
f = amount of air flow upwards

Under the assumption that negative pressure excess is instantaneously compensated by upwards air flow, we
yield the equations f, p∆ ≥ 0 and fp∆ = 0.

Example 2 (Contact problem). Consider an “elastic” body in motion. We want to model the deformation
of the body resulting from contact with a flat surface at a certain time, compare to figure 2. We fix a canonic
coordinate system and choose n points on the exterior of the body and denote

xi = contact stress at i-th point
aij = rate of excursion due to j-th stress at i-th point (usually > 0 when i = j)
qi = distance of the i-th point from surface if penetration were permitted (negative when intruding)

for i, j = 1...n. The (unknown) stress vector x ∈ Rn is non-negative. Also, q + Ax ≥ 0, i.e. stresses resolve
penetration. The complementary condition is written as

<x, q + Ax> = xT (q + Ax) = 0.

The scalar product implies that either
- the i-th stress is zero xi = 0 (i-th point does not “try” to penetrate surface) or
- the i-th point lies on surface, i.e. distance qi + (Ax)i = 0, and xi ≥ 0.
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Figure 3 : economical sector with production

Definition 1. A (linear) complementary problem is of the form:
Find x ∈ Rn with 0 ≤ x ⊥ F (x) ≥ 0 and F : Rn → Rn (affine).
“x ⊥ F (x)” means <x, F (x)> = xT F (x) = 0.

The solution space for an LCP is invariant under the weakening of the requirement xT F (x) = 0 to xT F (x) ≤ 0
as preferred in [AG04]. Suppose xT F (x) < 0, then clearly for some i we must have xiF (x)i < 0. Let xi > 0
and F (x)i < 0, the latter being a contradiction to F (x) ≥ 0. Analogous for xi < 0.
An LCP is not an optimization problem. In many applications F (x) is affine, which are multivariate polyno-
mials. In those cases we are dealing with semi-algebraic equations. The next examples show how optimiza-
tion problems are translated to complementary problems. The procedure is similar to find local maxima or
minima of a differentiable f : R→ R via solving f ′(x) = 0.

Remark 1 (Linear programming). Let all vectors and matrices be of appropriate dimensions. The dual
problem to:
Find x ≥ 0 with max cT x where b−Ax ≥ 0, is:
Find y ≥ 0 with min yT b where AT y − c ≥ 0.
We add slack variables v, u ≥ 0 into the constraints to yield b − Ax =: v ≥ 0 and AT y − c =: u ≥ 0. One
verifies that
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⊥
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=
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b

)
≥ 0 (0.1.1)

defines the associated LCP, using duality theorems, namely that xi > 0 implies ui = 0 and yj > 0 implies
vj = 0.
The Nash equilibrum point of a bimatrix game is the solution to an LP. Another example is to find the
best approximation in the 1-norm (or ∞-norm) of a vector by a linear combination of other vectors. Also
consider

Example 3 (Equilibrum of economical sector with production). Suppose that an economy has
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Figure 4 : visualization of lagrange multiplier method, squares indicate local extrema

i = 1...n items available for production and j = 1...m activities (productive processes).

(aij) = amount of item i required to operate activity j

xj = level of j-th activity, unknown, ≥ 0
bi = when ≥ 0, resource amount of item i, otherwise delivery requirement

b−Ax =: v ≥ 0 amounts of items used in total do not exceed resources
yi = prices of i-th item, unknown, ≥ 0
cj = value of output of activity j on market

AT y − c =: u ≥ 0 no activity makes positive profit

These relations are depicted in figure 3. That the costs for production of product j could only exceed
the value of the product on the market is due to the (by assumption) perfect competition. The following
conditions are quite intuitive:

x⊥u no activity making negative profit is operated at level > 0
z⊥v an item in excess supply has a zero price

The setting, all together, corresponds precisely to the LCP 0.1.1. max cT x means to maximize the value of
output of production and min yT b is to minimize the cost for resources.

Lemma 1 (Lagrange Multiplier). Consider the problem to find x ∈ Rn that min f(x) subject to g(x) ≤ 0
and h(x) = 0, where g = (g1, ..., gm)T and h = (h1, ..., hk)T are in C1(Rn,R), and k < n. Let x̂ be a local
minimum and regular, then there exist vectors λ ∈ Rm and µ ∈ Rk so that

∇xL(x̂, λ, µ) := ∇f + λT∇g + µT∇h|x̂ = 0,

λ⊥g(x̂) and λ ≥ 0.

These relations are called the Kuhn-Tucker-conditions. The principle is illustrated in figure 4. When m = 0,
the requirement of the gradient ∇xL(x̂, λ, µ) = 0 reduces to

∇f ∈ span{∇hi | i = 1...k}.

Remark 2 (Quadratic programming). Let all vectors and matrices be of appropriate dimensions and
Q symmetric (why?). Consider the following problem:
Find x ≥ 0 with min f(x) = 1

2xT Qx− cT x where b−Ax =: v ≥ 0. The constraints are concatenated in

g(x) =

(
Ax− b

−x

)
≤ 0.
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There are no strict equalities to satisfy, i.e. k = 0. Substituting λ → ( λ
u ), one easily derives from Lemma 1

∇xL(x, ( λ
u ), µ)T = Qx− c + (AT | − I)( λ

u ) = Qx− c + AT λ− u = 0,

(
λ

u

)
⊥

(
Ax− b

−x

)
and

(
λ

u

)
≥ 0,

all together define the associated LCP
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Algorithm 1 (Solving the LCP in O(2n)). In order to find (all) x ∈ Rn satisfying

0 ≤ x⊥Ax− b ≥ 0,

we loop over all I ∈ P({1, ..., n}). For such an index set I, let J = {1, ..., n} \ I, and we allow that xI ≥ 0
and set xJ = 0. Then

AI,IxI = bI (0.1.2)

is required by orthogonality. Furthermore,
AJ,IxI ≥ bJ . (0.1.3)

Hence, if the matrix AI,I is invertible, we solve for xI in 0.1.2 and simply check xI ≥ 0 and 0.1.3.
In case the matrix AI,I is singular we can still check whether there is an x̃ with AI,I x̃ = bI . If so, the basis
of the null space of AI,I , denoted by N = [ν1 | ... | νk>0], with AI,IN = 0 is of interest. The problem reduces
to find a vector α ∈ Rk, which satisfies the remaining conditions x̃ + Nα =: xI ≥ 0 and AJ,I(x̃ + Nα) ≥ bJ ,
joined into the linear program (

N

AJ,IN

)
α ≥

(
−x̃

bJ −AJ,I x̃

)
.

Hence, if all submatrices AI,I are invertible, the solution space is a discrete subset of Rn, possibly empty.
On a today computer, the algorithm requires on average a day for a problem of dimension n = 28. If only
one solution is of interest, reasonable heuristics might help to traverse P({1, ..., n}) .

Example 4 (Application of the rigorous algorithm). Consider the linear complementary problem
instance where

A =




0 1 0 1
0 1 0 1
2 −1 0 1
0 2 0 1


 and b =




1
1
1
2


 .

AI,I is invertible for I ∈ {∅, {2}, {2, 4}, {4}}, and when I = {4} we yield x = (0 0 0 2)T . For I = {1, 2, 3},
the solution is of the form x = (1 1 x3 0)T with x3 ≥ 0. There are no other x solving the LCP, the solution
space is non-discrete and disconnected.
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