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Figure 1 : phase diagram and depicted scenario of airflow through chimney with flap
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Figure 2 : elastic body colliding with flat surface
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0.1 Linear Complementary Problem

Example 1 (Airflow through chimney). Consider the scenario in figure 1, we denote

pa = pressure excess above door

f = amount of air low upwards

Under the assumption that negative pressure excess is instantaneously compensated by upwards air flow, we

yield the equations f,pan > 0 and fpa = 0.

Example 2 (Contact problem). Consider an “elastic” body in motion. We want to model the deformation
of the body resulting from contact with a flat surface at a certain time, compare to figure 2. We fix a canonic

coordinate system and choose n points on the exterior of the body and denote

xr; = contact stress at i-th point
a;; = rate of excursion due to j-th stress at i-th point (usually > 0 when ¢ = j)
q¢; = distance of the i-th point from surface if penetration were permitted (negative when intruding)

for 4,7 = 1...n. The (unknown) stress vector € R™ is non-negative. Also, ¢ + Az > 0, i.e. stresses resolve

penetration. The complementary condition is written as
<z,q+ Az> =zT(qg+ Az) = 0.

The scalar product implies that either
- the i-th stress is zero x; = 0 (i-th point does not “try” to penetrate surface) or

- the i-th point lies on surface, i.e. distance ¢; + (Ax); =0, and z; > 0.
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Figure 3 : economical sector with production

Definition 1. A (linear) complementary problem is of the form:
Find z € R” with 0 <z L F(x) > 0 and F: R” — R" (affine).
“r 1 F(z)” means <z, F(z)> =zTF(z)=0.

The solution space for an LCP is invariant under the weakening of the requirement 27 F(x) = 0 to 27 F(x) <0
as preferred in [AG04]. Suppose 2T F(x) < 0, then clearly for some i we must have z;F(z); < 0. Let z; > 0
and F(z); < 0, the latter being a contradiction to F(x) > 0. Analogous for z; < 0.

An LCP is not an optimization problem. In many applications F'(z) is affine, which are multivariate polyno-
mials. In those cases we are dealing with semi-algebraic equations. The next examples show how optimiza-
tion problems are translated to complementary problems. The procedure is similar to find local maxima or

minima of a differentiable f: R — R via solving f'(z) = 0.

Remark 1 (Linear programming). Let all vectors and matrices be of appropriate dimensions. The dual
problem to:

Find z > 0 with max ¢T« where b — Az > 0, is:

Find y > 0 with miny”b where ATy — ¢ > 0.

We add slack variables v,u > 0 into the constraints to yield b — Az =: v > 0 and ATy — ¢ =: u > 0. One

verifies that .
T U 0 |A T —c

defines the associated LCP, using duality theorems, namely that x; > 0 implies u; = 0 and y; > 0 implies
v; = 0.

The Nash equilibrum point of a bimatrix game is the solution to an LP. Another example is to find the
best approximation in the 1-norm (or co-norm) of a vector by a linear combination of other vectors. Also
consider

Example 3 (Equilibrum of economical sector with production). Suppose that an economy has
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Figure 4 : visualization of lagrange multiplier method, squares indicate local extrema

i = l...n items available for production and j = 1...m activities (productive processes).

(ai5) = amount of item ¢ required to operate activity j
Z; = level of j-th activity, unknown, > 0
b; = when > 0, resource amount of item %, otherwise delivery requirement
b—Ax =:v >0 amounts of items used in total do not exceed resources
Yi = prices of i-th item, unknown, > 0
¢y = value of output of activity j on market

ATy —c=:u4 >0 no activity makes positive profit

These relations are depicted in figure 3. That the costs for production of product j could only exceed
the value of the product on the market is due to the (by assumption) perfect competition. The following

conditions are quite intuitive:
rlu no activity making negative profit is operated at level > 0
zlw an item in excess supply has a zero price

T

The setting, all together, corresponds precisely to the LCP 0.1.1. max ¢’ x means to maximize the value of

output of production and miny”b is to minimize the cost for resources.

Lemma 1 (Lagrange Multiplier). Consider the problem to find x € R™ that min f(x) subject to g(z) <0
and h(zx) = 0, where g = (g1, ..., gm)" and h = (hy,...,hx)T are in C1(R™,R), and k < n. Let & be a local
minimum and reqular, then there exist vectors X\ € R™ and p € R* so that

VaoL(@, M) :==Vf4+ATVg+ uTVh|; =0,
Alg(z) and A>0.

These relations are called the Kuhn-Tucker-conditions. The principle is illustrated in figure 4. When m = 0,
the requirement of the gradient V,L(&, A, u) = 0 reduces to

Vf espan{Vh; | i =1..k}.

Remark 2 (Quadratic programming). Let all vectors and matrices be of appropriate dimensions and
Q@ symmetric (why?). Consider the following problem:

Find z > 0 with min f(z) = %xTQz — Tz where b — Az =: v > 0. The constraints are concatenated in

g<x><’4:b)go.
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There are no strict equalities to satisfy, i.e. k= 0. Substituting A — (), one easily derives from Lemma 1

VoL(z,(M),) ' =Qr —c+ (AT | —D())=Qzx—c+ATN—u=0,

() = ()

all together define the associated LCP

T j—
0< T 1 u -\ _ QA T L c > 0.
A v —A| 0 A b
Algorithm 1 (Solving the LCP in O(2")). In order to find (all) x € R™ satisfying

0<zlAx—b2>0,

we loop over all I € PB({1,...,n}). For such an index set I, let J = {1,...,n} \ I, and we allow that z; > 0
and set x; = 0. Then
A[)[(I}] = b[ (0.1.2)

is required by orthogonality. Furthermore,
A(]’[l’] Z bJ. (013)

Hence, if the matrix Ay ; is invertible, we solve for z; in 0.1.2 and simply check z; > 0 and 0.1.3.

In case the matrix Ay s is singular we can still check whether there is an & with A; ;& = b;. If so, the basis
of the null space of Ay j, denoted by N = 11 | ... | vg>o], with A; ;N = 0 is of interest. The problem reduces
to find a vector o € R¥, which satisfies the remaining conditions & + Now =: 27 > 0 and Aj1(Z+ Na) > by,

N -
o> B .
(AJJN) (bJAJJI)

Hence, if all submatrices Ay ; are invertible, the solution space is a discrete subset of R™, possibly empty.

joined into the linear program

On a today computer, the algorithm requires on average a day for a problem of dimension n = 28. If only

one solution is of interest, reasonable heuristics might help to traverse PB({1,...,n}) .

Example 4 (Application of the rigorous algorithm). Consider the linear complementary problem

instance where

0 1 01 1
1 1 1
A= 0 0 and b=
2 -1 0 1 1
0 2 01 2

Aypp is invertible for I € {0,{2},{2,4},{4}}, and when I = {4} we yield z = (0 0 0 2)7. For I = {1,2,3},
the solution is of the form x = (1 1 23 0)” with 3 > 0. There are no other x solving the LCP, the solution

space is non-discrete and disconnected.
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