
Figure 1: Elliptic curves of the form E[a, b].
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The field with a prime number p of elements is denoted Fp.

The projective space Pn(K) is the set of equivalence classes {K×(x0, ..., xn) : xi ∈ K and xk 6= 0 for
some k = 1...n} endowed with the topology induced by Kn+1 − {0}. For a representant x ∈ Pn(K) one
writes (x0 : ... : xn).

Q×/Q×2 is isomorphic to the F2-vector space with basis −1 and all primes in N.

A polynomial is homogeneous of degree d if f(λx̄) = λdf(x̄) for λ ∈ K×. We write f ∈ K[x̄]d.

Bezout: Let K be an algebraically closed field. For homogeneous f ∈ K[x, y, w]n and g ∈ K[x, y, w]m
without common factor #{(x : y : w) ∈ P2(K) : f(x, y, w) = g(x, y, w) = 0} = nm counting multiplicities.

1 Elliptic curves

The points on an cubic curve EK(ā) in Weierstrass form are projectively given as

(x : y : w) ∈ P2(K) : y2w + a1xyw + a3yw2 = x3 + a2x
2w + a4xw2 + a6w

3.

and by the same argument as in 2 we may also work with O = ∞ and points in the affine form

(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

1



Let f be a cubic homogeneous polynomial over P(K). The curve Cf is the set of all points P = (x, y, w),
which satisfy f(P ) = 0. Cf is singular at P = (x0, y0, w0) of the curve, where the Taylor-expansion of
f does not contain terms of first degree. Otherwise there is a unique tangent to the curve at P .

An elliptic curve E is the set of points on a nowhere singular cubic curve together with a distinguished
point O ∈ E. The chord-tangent rules (see below) endow E with a group structure, O is the neutral
element.

Usually credited to Poincare: The group law defined via the geometric chord-tangent action: P + Q :=
O(PQ). The operation is associative, i.e. (P + Q) + R = (P + Q) + R. Any choice of a neutral element
O produces the same group. An isomorphism (E, +′) ←→ (E, +) is given by P 7→ P − O′. The proof
amounts to show that (PP ′)(QQ′) = (PQ)(P ′Q′).

Every elliptic curve EK(ā) can be coordinate transformed into isomorphic EK[a, b] := {(x, y) ∈ K2 : y2 =
x3 + ax + b} in dependance of the coefficients a, b ∈ K, with discriminant ∆ = 4a3 + 27b2 6= 01, and
O = ∞2. In this scenario, the group operation has a compact algebraic formulation: Let P1 = (x1, y1)
and P2 = (x2, y2). The chord rule computes (x, y) = P1 + P2 for the non-trivial combinations and
P1 6= P2 as

x(x1 − x2)2 = x1x
2
2 + x2

1x2 − 2y1y2 + a(x1 + x2) + 2b

y(x1 − x2)3 = (3x2x
2
1 + x3

1 + a(3x1 + x2) + 4b)y2 − (3x1x
2
2 + x3

2 + a(x1 + 3x2) + 4b)y1.

The tangent operation yields the coordinates for (x, y) = P1 + P1 = 2P1:

x(4y2
1) = (3x2

1 + a)2 − 8x1y
2
1

y(2y1)3 = x6
1 + 5ax4

1 + 20bx3
1 − 5a2x2

1 − 4abc− a3 − 8b2

The j-invariant is j = 1728(4a3)/∆.

A particularly elegant perspective gives EK〈α, β〉 := EK[−3α, 2β] with char K 6= 2, 3 and α, β ∈ K. We
derive ∆ = α3 − β2 and j = α3/∆. Equip K2 with a K×-action via λ(·, ·) = (λ4·, λ6·). j maps the
K×-equivariant filtration of K2 to a filtration of P1(K)

K2 ⊃ K2 − {0} ⊃ K2 − {∆ = 0} ⊃ (K×)2 − {∆ = 0}
↓ j ↓ j ↓ j

P1(K) ⊃ K ⊃ K− {0, 1}

2 Meromorphic functions on a curve

Let K be algebraically closed. Let f ∈ K[x, y, w]d irreducible define a projective curve CK(f). We
define Kf [x, y, w] := K[x, y, w]/(f) =

⊕
k K[x, y, w]k, the field of fractions is Kf (x, y, w), its subfield the

meromorphic functions on CK(f) is K(x, y, w)0 := { g
h ∈ K(x, y, w) : ∃d such that g, h ∈ K[x, y, w]d}.

The group of divisors is Div C, a free abelian group on CK(f). Elements D ∈ Div C are sums akin
D =

∑
P∈C(K) mP [P ], with coefficients mP ∈ Z and only finitely many non-zero. deg D :=

∑
nP . A

partial ordering on Div C is given via D ≥ 0 ⇔ nP ≥ 0 for all P .

The intersection number is i(P, f ∩ g) := dimKK[X, Y ]P /(f, g).

For ϕ = g
h ∈ K(x, y, z)0 on C we define

div ϕ :=
∑

P :f(P )=g(P )=0

i(P,C ∩ {g = 0})[P ]−
∑

P :f(P )=h(P )=0

i(P, C ∩ {h = 0})[P ].

According to Bezout, deg f deg g = deg f deg h so deg div ϕ = 0. For D ∈ Div C we define the vector
space L(D) := {ϕ ∈ K(x, y, w)0 : deg ϕ + D ≥ 0}. Riemann-Roch: ∃g ∈ Z so that deg D + 1 − g ≤
dim L(D) < ∞, equality iff deg D > 2g − 2, g being defined thereby as the genus of the curve C.

1arguing with the derivatives, the cubic curve is singular for ∆ = 0
2projecting down from EK(a, b) = {(x : y : w) ∈ P3(K) : y2w = x3 + axw2 + bw3} via w 7→ 1 while O = (0 : 1 : 0)

represents the only class for w = 0
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Figure 2: Two examples of singular curves: EK〈0, 0〉 with cusp, EK〈−3, 2〉 where ∆ = 0 with double
point.

Declare Div0 C := {D ∈ Div C : deg D = 0}, and the group of principle divisors is P (C) := {D ∈
Div C : ∃ϕ with div ϕ = D}.

P (C) / Div0 C / Div C

Let f be an non-singular curve of genus 1, defining (EK, O), for some selected point O as the neutral
element. Then, the Picard group Pic0 C :=Div0 C/P (C) is isomorphic to (EK, O), via P ↔ [P ]− [O].
To see that P + S ↔ [P + S] − [O] is compliant, consider the meromorphic function ϕ = l1

l2
∈ P (C),

where l1 is the line going thru P, S and an implied third point R, and l2 the line intersecting R, O and
P + S. div ϕ = [P ] + [S] + [R]− [R]− [O]− [P + S]. Hence, in Pic0 C we have [P ] + [S] ∼ [P + S]− [O].

3 Algebraic proof for group structure

In projective space, one considers the space of homogeneous cubic forms having 8 fixed points (in general
position) in common. This space is spanned by λF +µG = 0. By Bezout F and G have 3 ·3 = 9 common
intersection points.

As done before, we are concerned showing for points on a CK(f) the equality T = S for S = (P + Q)R
and T = P (Q + R). ”Multiplication” with O yields then associativity.

So, we define the form F (G similar) to be the product of three adequate lines, e.g. combines the lines
through P/Q, O/QR and P + Q/R. Then, we apply Bezouts argument above to pairwise combinations
of the cubic curve form itself f , F , and G.

4 p-Reduction

The p-adic norm | · |p assigns 0 7→ 0, and reduced pn u
v ∈ Q 7→ p−n, and satisfies the ultrametric

inequality • |r + s|p ≤ max |r|p |s|p, and obviously • |rs|p = |r|p|s|p. The subring Q||p≤1 := {r ∈
Q : |r|p ≤ 1} ⊂ Q contains the p-integral elements in which analogous Q||p<1 is an ideal. Hence, we
well-define the ring homomorphism %p : Q||p≤1 → Fp

reduced pn u

v
7→

{
uv−1 mod p n = 0
0 n > 0

Let prime p > 2. The p-reduction of EQ(ā) → EFp(ā) with p - ∆ works via representing (x : y : w) ∈
EQ(ā) with (x̄, ȳ, w̄) so that • |x̄|p, |ȳ|p, |w̄|p ≤ 1 and • at least one of which has | · |p = 1, and • applying
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the non-obvious group homomorphism

%p(x̄, ȳ, w̄) = (%px̄, %pȳ, %pw̄).

More intuitive is the equivalent reduction: Let EQ[a, b] so that a, b ∈ Z and |∆| minimal 3. Consider the
p-reduction EFp

[a, b] ⊂ F2
p ∪ ∞ with a, b and the cubic form being interpreted ≡p. The following cases

can occur:

type of reduction ∆ ≡p −2ab ≡p isomorph #EFp

good, non-singular 6= 0 EFp
?

cusp 0 0 Zp p

nodal; rational tangents 0 ¤ Z×p p− 1
nodal; non-rational tangents 0 6= ¤ *** p + 1

Hasse: |ap := p + 1−#EFp
| < 2

√
p

Take an elliptic curve EQ(ā) in Weierstass form with integral coefficients. Then ∆ ∈ Z. EQ(ā) is in
global minimal form, if for all primes p with pn | ∆, the exponent n (equivalently |∆|p) is minimal
among all admissable coordinate transforms. Neron: for all EQ(ā) such a global minimal form exists.

Assume EQ(ā) is in global minimal form. The L-function of EQ(ā) is defined as LE : C→ C by

LE(s) :=
∏

p|∆

1
1− app−s

∏

p-∆

1
1− app−s + p1−2s

.

Birch, Swinnerton-Dyer Conjecture: LE(s) has an analytic continuation to entire C. The order of van-
ishing at s = 1 is r the rank4 of EQ.

5 EQ is finitely generated

Let κ : Z→ N obtain the values m 7→ #{p ∈ N prime : p|m}.
Let G be an abelian group. A norm on G is a map | · | : G → R+

0 satisfying • #{g : |g| < n} < ∞ for
all n ∈ N • |mg| = |m||g| for all m ∈ Z and • |g + h| ≤ |g|+ |h| for all g, h ∈ G. An abelian group G is
finitely generated ⇔ G is equipped with a norm and the index (G : nG) < ∞ for some n > 1.

In the following EQ denotes an elliptic curve oringinating from a non-singular cubic curve. The strategy
to prove Mordell 1922/23: EQ is finitely generated, i.e. EQ ∼= Tors EQ ×Zr where r denotes the rank of
EQ follows the above remark.

The 2-isogeny ϕ : E[a, b] → E[−2a, a2 − 4b] which maps (x, y) 7→ 1
x2 (y2, y(x2 − b)) has kernel {O, (0, 0)}.

The homomorphism α : E[a, b] → Q×/Q×2 is given by

O 7→ e

(0, 0) 7→ b mod Q×2

(x, y) 7→ x mod Q×2

Then |im α| < 2κ(b)+1. The sequence E[a, b]
ϕ−→ E[−2a, a2− 4b] α−→ Q×/Q×2 is exact. Furthermore, there

is a homomorphism ϕ′ so that E
ϕ−→ E′ = E[−2a, a2 − 4b]

ϕ′−→ E is multiplication by 2 on E. We deduce
that (EQ : 2EQ) < 2κ(b)+κ(a2−4b)+2 < ∞ for non-singular E = E[a, b] with a, b ∈ Z.

The naive height is h0 : EQ → R+
0 with (p

q , y) 7→ log max |p| |q| =: |pq |∞ and O 7→ 0. Under multiplica-
tion by 2 we have h0(2P ) = 4h0(P )+O(1), also #h−1

0 (c) < ∞. The canonical height h : EQ → R+
0 com-

poses as P 7→ lim h0(2
nP )

4n , which satisfies (h− h0)(P ) < O(1) and h(2P ) = 4h(P ), again #h−1(c) < ∞.
h is not a norm on EQ, however either h(P ±Q) ≤ h(P ) + h(Q) holds. In the proof via contradiction it
suffices to go with one.

3obtainable via the j-invariant substitutions a 7→ λ4a, b 7→ λ6b
4will be defined soon
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6 On the rank

Up to today, there exists no effective method to compute the rank for an elliptic curve. Let EQ = E[a, b]
and a, b ∈ Z. Denote a basis of EQ/Tors EQ ' Zr with P1, ..., Pr. There exists a unique symmetric
positive definite bilinear form 〈·, ·〉 : Zr × Zr → R with 〈P, P 〉 = h(P ). As a consequence 〈P,Q〉 =
1
2 (h(P +Q)−h(P )−h(Q)). With repect to the basis, the form is described by coefficients cij = 〈Pi, Pj〉.
The elliptic regulator RE/Q := det(cij) is independent of the choice of basis. If the rank r > 0 then
while T →∞ assymptotically

#{P ∈ EQ : h0(P ) ≤ T} ' |Tors EQ|Ωr

√
logr T

RE/Q
,

where Ωr is the volume of the unit ball in Rr. In the limit h0 can be exchanged by h.

Investigating curves of the form y2 = (x−α)(x−β)(x−γ) with roots in Z, and reducing the image space
of a certain homomorphism EQ/2EQ → Q×/Q×2 but leaving the map injective yields a more sofisticated
bound for the rank

r ≤ #{p ∈ N prime : exactly one of p|α−β, p|β−γ, p|α−γ}+2#{p ∈ N prime : p|α−β∧p|β−γ∧p|α−γ}−1.

The Hasse principle is expressed in

∏

2<p≤R,p-∆

#EFp

p
∼ logr R

A result delivered by Weil: E(K) is finitely generated.

7 Torsion points on EQ

ER is either ∼= S1 or ∼= S1×Z2
5. EQ being a subgroup implies that Tors EQ ⊂ Tors S1×Z2. Mazur 1975

discussed the possible types of the torsion part of EQ:

Tors EQ ∼=
{

Zk k ∈ {1, 2, . . . , 10, 12}
Z2 × Zk k ∈ {2, 4, 6, 8}

Lutz-Nagell 1930: Let EQ(ā) be given in Weierstrass form with coefficients ā ∈ Z5 and a1 = 0. All torsion
points P = (x, y) have integer coordinates. For prime p - ∆ the restriction %p|Tors EQ

is injective. For
elliptic curves of the form EQ[a, b] with a, b ∈ Z we have moreover y = 0 or y2|∆.

Example: Consider EQ[a, b] for different values a, b ∈ Z, ordered as in figure 1:

a b ∆ j Tors EQ[a, b] rank
-2 1 −5 55296

5

-1 2 104 −864
13

1 0 4 1728 0

8 Elliptic curves over C

This section needs major revision.

H = {z ∈ C : Im z > 0}. For τ ∈ H we define the period lattice Lτ = Zτ +Z. Every elliptic curve E(C)
corresponds to a complex torus Tτ = C/Lτ in that we find a (unique?) meromorphic Lτ -periodic, i.e.
elliptic function, ℘ : C → C satisfying ℘′2 = 4℘3 − g2℘ − g3℘. Evaluating (℘, ℘′)(z) for z ∈ Tτ yields

5have a look at the plots
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points on . . . . Tτ is the fundamental parallelogram. The Weierstrass ℘ function relative to Lτ is
given by ℘(z) = 1

z2 +
∑

ω∈Lτ−{0}
1

(z−ω)2 − 1
ω2 , so that ℘′(z) = −2

∑
ω∈Lτ

1
(z−ω)3 .

Any elliptic function f is in C{℘, ℘′}. For any u ∈ C the elliptic function ℘ − u has either two simple
zeros or one double zero. The latter is the case for u1 = ℘(1

2 ), u2 = ℘( τ
2 ) and u3 = ℘(1+τ

2 ). The zeros of
℘′ are at 1

2{1, τ, 1 + τ}, all being simple.

℘ satisfies the differential equation ℘′2 = 4℘3− g2℘− g3℘, where thru Gk(Lτ ) =
∑

ω∈Lτ−{0}
1

ωk for k ≥ 3
the coefficients are g2(Lτ ) = 60G4 and g3(Lτ ) = 140G6. In fact 4ω3−g2ω−g3 = 4(ω−u1)(ω−u2)(ω−u3)
⇒ non-singular.

The map ϕ : Tτ → E(C) ⊂ P2(C) given by z 7→
{

(℘ : ℘′ : 1)(z) z 6∈ Lτ

(0 : 1 : 0) z ∈ Lτ
is a group isomorphism,

∣∣∣∣
℘(z1) ℘′(z1) 1

℘(z2) ℘′(z2) 1

℘(z1+z2) −℘′(z1+z2) 1

∣∣∣∣ = 0 for all z1, z2. ∆ = g3
2 − 27g2

3 and j = 1728g3
2/∆

In fact ℘(z)− 1
z2 =

∑∞
k=1(k + 1)Gk+2(Lτ )zk.

9 Modular Forms, Cusp Forms

Let T = ( 1 1
0 1 ) and S =

(
0 1
−1 0

)
. T and S generate SL(2,Z). The action of Γ = SL(2,Z)/{±1} on H is

defined via
(

a b
c d

)
τ → aτ+b

cτ+d . Let R ⊂ H be a fundamental domain with respect to SL(2,Z)/{±1} acting.

An unrestricted modular form f : H → C of weight k satisfies f(γτ) = (cτ + d)kf(τ) for all γ =(
a b
c d

) ∈ SL(2,Z). Due to the periodicity f(τ) = f(τ +1), we put τ = ρ+ iσ and may expand f in Fourier
series in the variable ρ, to yield the q-expansion of f

f(τ) =
∑

n∈Z
cnqn with q = exp 2πiτ and cn =

∫

[− 1
2 , 1

2 ]

f(ρ)q−n dρ.

As σ → ∞ tends q → 0, hence, we the expansion is around ∞. If cZ− ≡ 0 then f is a modular form.
If also c0 = 0, we call f a cusp form. Prominent examples are

f f ◦ γ q-expansion
j j 1

q + 744 + 196884q + 21493760q2 + . . .

∆ (cτ + d)12∆ (2π)12(q − 24q2 + . . . ) [alternatively (2π)12q
∏
N(1− qn)24]

Gk (cτ + d)2kGk 2ξ(k) ∗ ∗ ∗+ 2(2πi)k

(k−1)!

∑
N

nk−1qn

1−qn

For a modular form f of weight k we have

v∞ +
1
2
vi +

1
3
vρ +

′∑
vτ =

k

12

The Mellin transform of a nice function f : R+ → C is a function g : C→ C with g(s) :=
∫
R+ f(t)ts dt

t .
The gamma function Γ(s) is the transform of exp−·. We let a cusp form f undergo the transformation
along the line iR+, and denote the result Λf (s) :=

∫
R+ f(iσ)σs dσ

σ = (2π)−sΓ(s)Lf (s), where Lf (s) =∑∞
1

cn

ns is the L-function of the cusp form f .

Prove or disproove that every EQ is modular, i.e. LE equals to Ef for some cusp form f and get
1.000.000$.
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