

Figure 1: Elliptic curves of the form E[a, b].

... download this document from www.hakenberg.de

Contents

1	Elliptic curves	1
2	Meromorphic functions on a curve	2
3	Algebraic proof for group structure	3
4	<i>p</i> -Reduction	3
5	$E_{\mathbb{Q}}$ is finitely generated	4
6	On the rank	5
7	Torsion points on $E_{\mathbb{Q}}$	5
8	Elliptic curves over \mathbb{C}	5
9	Modular Forms, Cusp Forms	6

The field with a prime number p of elements is denoted \mathbb{F}_p .

The **projective space** $\mathbb{P}_n(\mathbb{K})$ is the set of equivalence classes $\{\mathbb{K}^{\times}(x_0, ..., x_n) : x_i \in \mathbb{K} \text{ and } x_k \neq 0 \text{ for some } k = 1...n\}$ endowed with the topology induced by $\mathbb{K}^{n+1} - \{0\}$. For a representant $x \in \mathbb{P}_n(\mathbb{K})$ one writes $(x_0 : ... : x_n)$.

 $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$ is isomorphic to the \mathbb{F}_2 -vector space with basis -1 and all primes in \mathbb{N} .

A polynomial is **homogeneous** of degree d if $f(\lambda \bar{x}) = \lambda^d f(\bar{x})$ for $\lambda \in \mathbb{K}^{\times}$. We write $f \in \mathbb{K}[\bar{x}]_d$.

Bezout: Let \mathbb{K} be an algebraically closed field. For homogeneous $f \in \mathbb{K}[x, y, w]_n$ and $g \in \mathbb{K}[x, y, w]_m$ without common factor $\#\{(x:y:w) \in \mathbb{P}_2(\mathbb{K}) : f(x, y, w) = g(x, y, w) = 0\} = nm$ counting multiplicities.

1 Elliptic curves

The points on an cubic curve $E_{\mathbb{K}}(\bar{a})$ in Weierstrass form are projectively given as

$$(x:y:w) \in \mathbb{P}_2(\mathbb{K}): y^2w + a_1xyw + a_3yw^2 = x^3 + a_2x^2w + a_4xw^2 + a_6w^3 + a_5w^2 + a_6w^3 + a_5w^2 + a_6w^3 + a_5w^2 + a_5w^2$$

and by the same argument as in ² we may also work with $O = \infty$ and points in the affine form

$$(x,y) \in \mathbb{K}^2 : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

Let f be a cubic homogeneous polynomial over $\mathbb{P}(\mathbb{K})$. The curve C_f is the set of all points P = (x, y, w), which satisfy f(P) = 0. C_f is **singular** at $P = (x_0, y_0, w_0)$ of the curve, where the Taylor-expansion of f does not contain terms of first degree. Otherwise there is a unique tangent to the curve at P.

An elliptic curve E is the set of points on a nowhere singular cubic curve together with a distinguished point $O \in E$. The chord-tangent rules (see below) endow E with a group structure, O is the **neutral** element.

Usually credited to Poincare: The group law defined via the geometric chord-tangent action: P + Q := O(PQ). The operation is associative, i.e. (P+Q) + R = (P+Q) + R. Any choice of a neutral element O produces the same group. An isomorphism $(E, +') \longleftrightarrow (E, +)$ is given by $P \mapsto P - O'$. The proof amounts to show that (PP')(QQ') = (PQ)(P'Q').

Every elliptic curve $E_{\mathbb{K}}(\bar{a})$ can be coordinate transformed into isomorphic $E_{\mathbb{K}}[a,b] := \{(x,y) \in \mathbb{K}^2 : y^2 = x^3 + ax + b\}$ in dependance of the coefficients $a, b \in \mathbb{K}$, with **discriminant** $\Delta = 4a^3 + 27b^2 \neq 0^1$, and $O = \infty^2$. In this scenario, the group operation has a compact algebraic formulation: Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$. The **chord** rule computes $(x, y) = P_1 + P_2$ for the non-trivial combinations and $P_1 \neq P_2$ as

$$\begin{aligned} x(x_1 - x_2)^2 &= x_1 x_2^2 + x_1^2 x_2 - 2y_1 y_2 + a(x_1 + x_2) + 2b \\ y(x_1 - x_2)^3 &= (3x_2 x_1^2 + x_1^3 + a(3x_1 + x_2) + 4b)y_2 - (3x_1 x_2^2 + x_2^3 + a(x_1 + 3x_2) + 4b)y_1. \end{aligned}$$

The **tangent** operation yields the coordinates for $(x, y) = P_1 + P_1 = 2P_1$:

$$\begin{aligned} x(4y_1^2) &= (3x_1^2 + a)^2 - 8x_1y_1^2 \\ y(2y_1)^3 &= x_1^6 + 5ax_1^4 + 20bx_1^3 - 5a^2x_1^2 - 4abc - a^3 - 8b^2 \end{aligned}$$

The *j*-invariant is $j = 1728(4a^3)/\Delta$.

A particularly elegant perspective gives $E_{\mathbb{K}}\langle \alpha, \beta \rangle := E_{\mathbb{K}}[-3\alpha, 2\beta]$ with char $\mathbb{K} \neq 2, 3$ and $\alpha, \beta \in \mathbb{K}$. We derive $\Delta = \alpha^3 - \beta^2$ and $j = \alpha^3/\Delta$. Equip \mathbb{K}^2 with a \mathbb{K}^{\times} -action via $\lambda(\cdot, \cdot) = (\lambda^4 \cdot, \lambda^6 \cdot)$. j maps the \mathbb{K}^{\times} -equivariant filtration of \mathbb{K}^2 to a filtration of $\mathbb{P}_1(\mathbb{K})$

$$\begin{array}{cccc} \mathbb{K}^2 &\supset & \mathbb{K}^2 - \{0\} &\supset & \mathbb{K}^2 - \{\Delta = 0\} &\supset & (\mathbb{K}^{\times})^2 - \{\Delta = 0\} \\ &\downarrow j & \downarrow j & \downarrow j \\ & \mathbb{P}_1(\mathbb{K}) &\supset & \mathbb{K} & \supset & \mathbb{K} - \{0, 1\} \end{array}$$

2 Meromorphic functions on a curve

Let \mathbb{K} be algebraically closed. Let $f \in \mathbb{K}[x, y, w]_d$ irreducible define a projective curve $C_{\mathbb{K}}(f)$. We define $\mathbb{K}_f[x, y, w] := \mathbb{K}[x, y, w]/(f) = \bigoplus_k \mathbb{K}[x, y, w]_k$, the field of fractions is $\mathbb{K}_f(x, y, w)$, its subfield the **meromorphic functions** on $C_{\mathbb{K}}(f)$ is $\mathbb{K}(x, y, w)_0 := \{\frac{g}{h} \in \mathbb{K}(x, y, w) : \exists d \text{ such that } g, h \in \mathbb{K}[x, y, w]_d\}.$

The **group of divisors** is Div C, a free abelian group on $C_{\mathbb{K}}(f)$. Elements $D \in \text{Div } C$ are sums akin $D = \sum_{P \in C(\mathbb{K})} m_P[P]$, with coefficients $m_P \in \mathbb{Z}$ and only finitely many non-zero. deg $D := \sum n_P$. A partial ordering on Div C is given via $D \ge 0 \Leftrightarrow n_P \ge 0$ for all P.

The intersection number is $i(P, f \cap g) := \dim_{\mathbb{K}} \mathbb{K}[X, Y]_P/(f, g).$

For $\varphi = \frac{g}{h} \in \mathbb{K}(x, y, z)_0$ on C we define

$$\operatorname{div} \varphi := \sum_{P: f(P) = g(P) = 0} i(P, C \cap \{g = 0\})[P] - \sum_{P: f(P) = h(P) = 0} i(P, C \cap \{h = 0\})[P].$$

According to Bezout, deg $f \deg g = \deg f \deg h$ so deg div $\varphi = 0$. For $D \in \text{Div } C$ we define the vector space $L(D) := \{\varphi \in \mathbb{K}(x, y, w)_0 : \deg \varphi + D \ge 0\}$. Riemann-Roch: $\exists g \in \mathbb{Z}$ so that deg $D + 1 - g \le \dim L(D) < \infty$, equality iff deg D > 2g - 2, g being defined thereby as the genus of the curve C.

 $^{^1\}mathrm{arguing}$ with the derivatives, the cubic curve is singular for $\Delta=0$

²projecting down from $E_{\mathbb{K}}(a,b) = \{(x:y:w) \in \mathbb{P}_3(\mathbb{K}) : y^2w = x^3 + axw^2 + bw^3\}$ via $w \mapsto 1$ while O = (0:1:0) represents the only class for w = 0

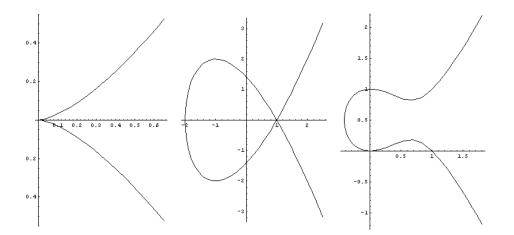


Figure 2: Two examples of singular curves: $E_{\mathbb{K}}\langle 0,0\rangle$ with **cusp**, $E_{\mathbb{K}}\langle -3,2\rangle$ where $\Delta = 0$ with **double** point.

Declare Div₀ $C := \{D \in \text{Div } C : \deg D = 0\}$, and the group of **principle divisors** is $P(C) := \{D \in \text{Div } C : \exists \varphi \text{ with div } \varphi = D\}$.

$$P(C) \triangleleft \operatorname{Div}_0 C \triangleleft \operatorname{Div} C$$

Let f be an non-singular curve of genus 1, defining $(E_{\mathbb{K}}, O)$, for some selected point O as the neutral element. Then, the **Picard group** Pic₀ C :=Div₀ C/P(C) is isomorphic to $(E_{\mathbb{K}}, O)$, via $P \leftrightarrow [P] - [O]$. To see that $P + S \leftrightarrow [P + S] - [O]$ is compliant, consider the meromorphic function $\varphi = \frac{l_1}{l_2} \in P(C)$, where l_1 is the line going thru P, S and an implied third point R, and l_2 the line intersecting R, O and P + S. div $\varphi = [P] + [S] + [R] - [R] - [O] - [P + S]$. Hence, in Pic₀ C we have $[P] + [S] \sim [P + S] - [O]$.

3 Algebraic proof for group structure

In projective space, one considers the space of homogeneous cubic forms having 8 fixed points (in general position) in common. This space is spanned by $\lambda F + \mu G = 0$. By Bezout F and G have $3 \cdot 3 = 9$ common intersection points.

As done before, we are concerned showing for points on a $C_{\mathbb{K}}(f)$ the equality T = S for S = (P+Q)Rand T = P(Q+R). "Multiplication" with O yields then associativity.

So, we define the form F (G similar) to be the product of three adequate lines, e.g. combines the lines through P/Q, O/QR and P + Q/R. Then, we apply Bezouts argument above to pairwise combinations of the cubic curve form itself f, F, and G.

4 *p*-Reduction

The *p*-adic norm $|\cdot|_p$ assigns $0 \mapsto 0$, and reduced $p^n \frac{u}{v} \in \mathbb{Q} \mapsto p^{-n}$, and satisfies the ultrametric inequality $\bullet |r + s|_p \leq \max |r|_p |s|_p$, and obviously $\bullet |rs|_p = |r|_p |s|_p$. The subring $\mathbb{Q}_{||_p \leq 1} := \{r \in \mathbb{Q} : |r|_p \leq 1\} \subset \mathbb{Q}$ contains the *p*-integral elements in which analogous $\mathbb{Q}_{||_p < 1}$ is an ideal. Hence, we well-define the ring homomorphism $\varrho_p : \mathbb{Q}_{||_p \leq 1} \to \mathbb{F}_p$

reduced
$$p^n \frac{u}{v} \mapsto \begin{cases} uv^{-1} \mod p & n = 0\\ 0 & n > 0 \end{cases}$$

Let prime p > 2. The *p*-reduction of $E_{\mathbb{Q}}(\bar{a}) \to E_{\mathbb{F}_p}(\bar{a})$ with $p \nmid \Delta$ works via representing $(x : y : w) \in E_{\mathbb{Q}}(\bar{a})$ with $(\bar{x}, \bar{y}, \bar{w})$ so that $\bullet |\bar{x}|_p, |\bar{y}|_p, |\bar{w}|_p \leq 1$ and \bullet at least one of which has $|\cdot|_p = 1$, and \bullet applying

the non-obvious group homomorphism

$$\varrho_p(\bar{x}, \bar{y}, \bar{w}) = (\varrho_p \bar{x}, \varrho_p \bar{y}, \varrho_p \bar{w}).$$

More intuitive is the equivalent reduction: Let $E_{\mathbb{Q}}[a, b]$ so that $a, b \in \mathbb{Z}$ and $|\Delta|$ minimal ³. Consider the *p*-reduction $E_{\mathbb{F}_p}[a, b] \subset \mathbb{F}_p^2 \cup \infty$ with a, b and the cubic form being interpreted \equiv_p . The following cases can occur:

type of reduction	$\Delta \equiv_p$	$-2ab \equiv_p$	isomorph	$#E_{\mathbb{F}_p}$
good, non-singular	$\neq 0$		$E_{\mathbb{F}_p}$?
cusp	0	0	\mathbb{Z}_p	p
nodal; rational tangents	0		$\mathbb{Z}_p^{ imes}$	p-1
nodal; non-rational tangents	0	$\neq \Box$	***	p+1

Hasse: $|a_p := p + 1 - \# E_{\mathbb{F}_p}| < 2\sqrt{p}$

Take an elliptic curve $E_{\mathbb{Q}}(\bar{a})$ in Weierstass form with integral coefficients. Then $\Delta \in \mathbb{Z}$. $E_{\mathbb{Q}}(\bar{a})$ is in **global minimal form**, if for all primes p with $p^n \mid \Delta$, the exponent n (equivalently $|\Delta|_p$) is minimal among all admissable coordinate transforms. Neron: for all $E_{\mathbb{Q}}(\bar{a})$ such a global minimal form exists.

Assume $E_{\mathbb{Q}}(\bar{a})$ is in global minimal form. The *L*-function of $E_{\mathbb{Q}}(\bar{a})$ is defined as $L_E: \mathbb{C} \to \mathbb{C}$ by

$$L_E(s) := \prod_{p \mid \Delta} \frac{1}{1 - a_p p^{-s}} \prod_{p \nmid \Delta} \frac{1}{1 - a_p p^{-s} + p^{1-2s}}.$$

<u>Birch, Swinnerton-Dyer Conjecture</u>: $L_E(s)$ has an analytic continuation to entire \mathbb{C} . The order of vanishing at s = 1 is r the rank⁴ of $E_{\mathbb{Q}}$.

5 $E_{\mathbb{Q}}$ is finitely generated

Let $\kappa : \mathbb{Z} \to \mathbb{N}$ obtain the values $m \mapsto \#\{p \in \mathbb{N} \text{ prime} : p|m\}$.

Let G be an abelian group. A norm on G is a map $|\cdot|: G \to \mathbb{R}_0^+$ satisfying $\bullet \#\{g: |g| < n\} < \infty$ for all $n \in \mathbb{N} \bullet |mg| = |m||g|$ for all $m \in \mathbb{Z}$ and $\bullet |g+h| \le |g| + |h|$ for all $g, h \in G$. An abelian group G is finitely generated $\Leftrightarrow G$ is equipped with a norm and the index $(G: nG) < \infty$ for some n > 1.

In the following $E_{\mathbb{Q}}$ denotes an elliptic curve oringinating from a non-singular cubic curve. The strategy to prove Mordell 1922/23: $E_{\mathbb{Q}}$ is finitely generated, i.e. $E_{\mathbb{Q}} \cong \text{Tors } E_{\mathbb{Q}} \times \mathbb{Z}^r$ where r denotes the **rank** of $E_{\mathbb{Q}}$ follows the above remark.

The 2-isogeny $\varphi : E[a, b] \to E[-2a, a^2 - 4b]$ which maps $(x, y) \mapsto \frac{1}{x^2}(y^2, y(x^2 - b))$ has kernel $\{O, (0, 0)\}$. The homomorphism $\alpha : E[a, b] \to \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$ is given by

$$\begin{array}{rcl} O \mapsto & e \\ (0,0) \mapsto & b & \mod \mathbb{Q}^{\times 2} \\ (x,y) \mapsto & x & \mod \mathbb{Q}^{\times 2} \end{array}$$

Then $|\text{im } \alpha| < 2^{\kappa(b)+1}$. The sequence $E[a, b] \xrightarrow{\varphi} E[-2a, a^2 - 4b] \xrightarrow{\alpha} \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$ is exact. Furthermore, there is a homomorphism φ' so that $E \xrightarrow{\varphi} E' = E[-2a, a^2 - 4b] \xrightarrow{\varphi'} E$ is multiplication by 2 on E. We deduce that $(E_{\mathbb{Q}} : 2E_{\mathbb{Q}}) < 2^{\kappa(b)+\kappa(a^2-4b)+2} < \infty$ for non-singular E = E[a, b] with $a, b \in \mathbb{Z}$.

The **naive height** is $h_0: E_{\mathbb{Q}} \to \mathbb{R}_0^+$ with $(\frac{p}{q}, y) \mapsto \log \max |p| |q| =: |\frac{p}{q}|_{\infty}$ and $O \mapsto 0$. Under multiplication by 2 we have $h_0(2P) = 4h_0(P) + O(1)$, also $\#h_0^{-1}(c) < \infty$. The **canonical height** $h: \mathbb{E}_{\mathbb{Q}} \to \mathbb{R}_0^+$ composes as $P \mapsto \lim \frac{h_0(2^n P)}{4^n}$, which satisfies $(h - h_0)(P) < O(1)$ and h(2P) = 4h(P), again $\#h^{-1}(c) < \infty$. h is <u>not</u> a norm on $E_{\mathbb{Q}}$, however either $h(P \pm Q) \leq h(P) + h(Q)$ holds. In the proof via contradiction it suffices to go with one.

³obtainable via the *j*-invariant substitutions $a \mapsto \lambda^4 a, b \mapsto \lambda^6 b$

⁴will be defined soon

6 On the rank

Up to today, there exists no effective method to compute the rank for an elliptic curve. Let $E_{\mathbb{Q}} = E[a, b]$ and $a, b \in \mathbb{Z}$. Denote a basis of $E_{\mathbb{Q}}/\text{Tors } E_{\mathbb{Q}} \simeq \mathbb{Z}^r$ with $P_1, ..., P_r$. There exists a unique symmetric positive definite bilinear form $\langle \cdot, \cdot \rangle : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{R}$ with $\langle P, P \rangle = h(P)$. As a consequence $\langle P, Q \rangle = \frac{1}{2}(h(P+Q) - h(P) - h(Q))$. With repect to the basis, the form is described by coefficients $c_{ij} = \langle P_i, P_j \rangle$. The **elliptic regulator** $R_{E/\mathbb{Q}} := \det(c_{ij})$ is independent of the choice of basis. If the rank r > 0 then while $T \to \infty$ asymptotically

$$\#\{P \in E_{\mathbb{Q}} : h_0(P) \le T\} \simeq |\text{Tors } E_{\mathbb{Q}}|\Omega_r \sqrt{\frac{\log^r T}{R_{E/\mathbb{Q}}}}$$

where Ω_r is the volume of the unit ball in \mathbb{R}^r . In the limit h_0 can be exchanged by h.

Investigating curves of the form $y^2 = (x - \alpha)(x - \beta)(x - \gamma)$ with roots in \mathbb{Z} , and reducing the image space of a certain homomorphism $E_{\mathbb{Q}}/2E_{\mathbb{Q}} \to \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$ but leaving the map injective yields a more sofisticated bound for the rank

 $r \leq \#\{p \in \mathbb{N} \text{ prime} : \text{exactly one of } p | \alpha - \beta, p | \beta - \gamma, p | \alpha - \gamma\} + 2\#\{p \in \mathbb{N} \text{ prime} : p | \alpha - \beta \wedge p | \beta - \gamma \wedge p | \alpha - \gamma\} - 1.$

The **Hasse principle** is expressed in

$$\prod_{2$$

A result delivered by Weil: $E(\mathbb{K})$ is finitely generated.

7 Torsion points on $E_{\mathbb{Q}}$

 $E_{\mathbb{R}}$ is either $\cong S^1$ or $\cong S^1 \times \mathbb{Z}_2^{-5}$. $E_{\mathbb{Q}}$ being a subgroup implies that Tors $E_{\mathbb{Q}} \subset$ Tors $S^1 \times \mathbb{Z}_2$. Mazur 1975 discussed the possible types of the torsion part of $E_{\mathbb{Q}}$:

Tors
$$E_{\mathbb{Q}} \cong \begin{cases} \mathbb{Z}_k & k \in \{1, 2, \dots, 10, 12\}\\ \mathbb{Z}_2 \times \mathbb{Z}_k & k \in \{2, 4, 6, 8\} \end{cases}$$

<u>Lutz-Nagell 1930</u>: Let $E_{\mathbb{Q}}(\bar{a})$ be given in Weierstrass form with coefficients $\bar{a} \in \mathbb{Z}^5$ and $a_1 = 0$. All torsion points P = (x, y) have integer coordinates. For prime $p \nmid \Delta$ the restriction $\rho_p|_{\text{Tors } E_{\mathbb{Q}}}$ is injective. For elliptic curves of the form $E_{\mathbb{Q}}[a, b]$ with $a, b \in \mathbb{Z}$ we have moreover y = 0 or $y^2|\Delta$.

Example: Consider $E_{\mathbb{Q}}[a, b]$ for different values $a, b \in \mathbb{Z}$, ordered as in figure 1:

a	b	Δ	j	Tors $E_{\mathbb{Q}}[a, b]$	rank
-2	1	-5	$\frac{55296}{5}$		
-1	2	104	$\frac{-864}{13}$		
1	0	4	1728		0

8 Elliptic curves over \mathbb{C}

This section needs major revision.

 $\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$. For $\tau \in \mathfrak{H}$ we define the **period lattice** $L_{\tau} = \mathbb{Z}\tau + \mathbb{Z}$. Every elliptic curve $E(\mathbb{C})$ corresponds to a complex torus $\mathbb{T}_{\tau} = \mathbb{C}/L_{\tau}$ in that we find a (unique?) meromorphic L_{τ} -periodic, i.e. elliptic function, $\wp : \mathbb{C} \to \mathbb{C}$ satisfying $\wp'^2 = 4\wp^3 - g_2\wp - g_3\wp$. Evaluating $(\wp, \wp')(z)$ for $z \in \mathbb{T}_{\tau}$ yields

⁵have a look at the plots

points on \mathbb{T}_{τ} is the **fundamental parallelogram**. The Weierstrass \wp function relative to L_{τ} is given by $\wp(z) = \frac{1}{z^2} + \sum_{\omega \in L_{\tau} - \{0\}} \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2}$, so that $\wp'(z) = -2\sum_{\omega \in L_{\tau}} \frac{1}{(z-\omega)^3}$.

Any elliptic function f is in $\mathbb{C}\{\wp, \wp'\}$. For any $u \in \mathbb{C}$ the elliptic function $\wp - u$ has either two simple zeros or one double zero. The latter is the case for $u_1 = \wp(\frac{1}{2})$, $u_2 = \wp(\frac{\tau}{2})$ and $u_3 = \wp(\frac{1+\tau}{2})$. The zeros of \wp' are at $\frac{1}{2}\{1, \tau, 1+\tau\}$, all being simple.

 \wp satisfies the differential equation $\wp'^2 = 4\wp^3 - g_2\wp - g_3\wp$, where thru $G_k(L_\tau) = \sum_{\omega \in L_\tau - \{0\}} \frac{1}{\omega^k}$ for $k \ge 3$ the coefficients are $g_2(L_\tau) = 60G_4$ and $g_3(L_\tau) = 140G_6$. In fact $4\omega^3 - g_2\omega - g_3 = 4(\omega - u_1)(\omega - u_2)(\omega - u_3)$ \Rightarrow non-singular.

The map $\varphi : \mathbb{T}_{\tau} \to E(\mathbb{C}) \subset \mathbb{P}_2(\mathbb{C})$ given by $z \mapsto \begin{cases} (\wp : \wp' : 1)(z) & z \notin L_{\tau} \\ (0 : 1 : 0) & z \in L_{\tau} \end{cases}$ is a group isomorphism, $\begin{vmatrix} \wp(z_1) & \wp'(z_1) & 1 \\ \wp(z_2) & \wp'(z_2) & 1 \\ \wp(z_1+z_2) & -\wp'(z_1+z_2) & 1 \end{vmatrix} = 0$ for all z_1, z_2 . $\Delta = g_2^3 - 27g_3^2$ and $j = 1728g_2^3/\Delta$ In fact $\wp(z) - \frac{1}{z^2} = \sum_{k=1}^{\infty} (k+1)G_{k+2}(L_{\tau})z^k$.

9 Modular Forms, Cusp Forms

Let $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. T and S generate $\operatorname{SL}(2, \mathbb{Z})$. The action of $\Gamma = \operatorname{SL}(2, \mathbb{Z})/\{\pm 1\}$ on \mathfrak{H} is defined via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau \to \frac{a\tau + b}{c\tau + d}$. Let $R \subset \mathfrak{H}$ be a fundamental domain with respect to $\operatorname{SL}(2, \mathbb{Z})/\{\pm 1\}$ acting.

An unrestricted modular form $f : \mathfrak{H} \to \mathbb{C}$ of weight k satisfies $f(\gamma \tau) = (c\tau + d)^k f(\tau)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$. Due to the periodicity $f(\tau) = f(\tau+1)$, we put $\tau = \rho + i\sigma$ and may expand f in Fourier series in the variable ρ , to yield the q-expansion of f

$$f(\tau) = \sum_{n \in \mathbb{Z}} c_n q^n \quad \text{with} \quad q = \exp 2\pi i\tau \quad \text{and} \quad c_n = \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]} f(\rho) q^{-n} \, d\rho.$$

As $\sigma \to \infty$ tends $q \to 0$, hence, we the expansion is around ∞ . If $c_{\mathbb{Z}_{-}} \equiv 0$ then f is a **modular form**. If also $c_0 = 0$, we call f a **cusp form**. Prominent examples are

$$\begin{array}{ll} f & f \circ \gamma & q\text{-expansion} \\ \hline j & j & \frac{1}{q} + 744 + 196884q + 21493760q^2 + \dots \\ \Delta & (c\tau + d)^{12}\Delta & (2\pi)^{12}(q - 24q^2 + \dots) \text{ [alternatively } (2\pi)^{12}q\prod_{\mathbb{N}}(1 - q^n)^{24}] \\ G_k & (c\tau + d)^{2k}G_k & 2\xi(k) * * * + \frac{2(2\pi i)^k}{(k-1)!}\sum_{\mathbb{N}}\frac{n^{k-1}q^n}{1 - q^n} \end{array}$$

For a modular form f of weight k we have

$$v_{\infty} + \frac{1}{2}v_i + \frac{1}{3}v_{\rho} + \sum' v_{\tau} = \frac{k}{12}$$

The Mellin transform of a nice function $f : \mathbb{R}^+ \to \mathbb{C}$ is a function $g : \mathbb{C} \to \mathbb{C}$ with $g(s) := \int_{\mathbb{R}^+} f(t)t^s \frac{dt}{t}$. The gamma function $\Gamma(s)$ is the transform of exp $-\cdot$. We let a cusp form f undergo the transformation along the line $i\mathbb{R}^+$, and denote the result $\Lambda_f(s) := \int_{\mathbb{R}^+} f(i\sigma)\sigma^s \frac{d\sigma}{\sigma} = (2\pi)^{-s}\Gamma(s)L_f(s)$, where $L_f(s) = \sum_{1}^{\infty} \frac{c_n}{n^s}$ is the *L*-function of the cusp form f.

Prove or disprove that every E_Q is **modular**, i.e. L_E equals to E_f for some cusp form f and get 1.000.000\$.

References:

- D. Husemöller Elliptic Curves, SK 240 H969 (2)
- A. Knapp Elliptic Curves, SK240 K67 +2
- J. Milne Elliptic Curves, www.milne.org