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Figure 1: Elliptic curves of the form Fla,b].
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Modular Forms, Cusp Forms

The field with a prime number p of elements is denoted Fy,.

The projective space P, (K) is the set of equivalence classes {K*(xq,...,x,) : ; € K and z # 0 for
some k = 1...n} endowed with the topology induced by K"*! — {0}. For a representant = € P,,(K) one
writes (g @ ... 1 Ty).

Q*/Q*? is isomorphic to the Fy-vector space with basis —1 and all primes in N.
A polynomial is homogeneous of degree d if f(\Z) = A% f(z) for A € K*. We write f € K[Z]4.

Bezoutl Let K be an algebraically closed field. For homogeneous f € K[z,y,w], and g € Klz,y, w]m,
without common factor #{(x : y : w) € P3(K) : f(x,y,w) = g(z,y,w) = 0} = nm counting multiplicities.

1 Elliptic curves

The points on an cubic curve Ex(a) in Weierstrass form are projectively given as

(z:y:w) € Py(K) : y?w + arzyw + asyw? = 23 + asx®w + agzw? + agw®.
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and by the same argument as in © we may also work with O = co and points in the affine form

(x,y) eK?: y2 + a1y + azy = 23 + a2m2 + asx + ag.



Let f be a cubic homogeneous polynomial over P(K). The curve C; is the set of all points P = (z,y, w),
which satisfy f(P) = 0. Cy is singular at P = (xo, Yo, wo) of the curve, where the Taylor-expansion of
f does not contain terms of first degree. Otherwise there is a unique tangent to the curve at P.

An elliptic curve F is the set of points on a nowhere singular cubic curve together with a distinguished
point O € E. The chord-tangent rules (see below) endow E with a group structure, O is the neutral
element.

Usually credited to [Poincare: The group law defined via the geometric chord-tangent action: P + @ :=
O(PQ). The operation is associative, i.e. (P+ Q)+ R = (P + Q) + R. Any choice of a neutral element
O produces the same group. An isomorphism (E,+') «— (E,+) is given by P — P — O’. The proof
amounts to show that (PP')(QQ’) = (PQ)(P'Q’).

Every elliptic curve Ex(a) can be coordinate transformed into isomorphic Ek[a,b] := {(z,y) € K? : y? =
23 + ax + b} in dependance of the coefficients a,b € K, with discriminant A = 4a® + 270? # 0!, and
O = oo?. In this scenario, the group operation has a compact algebraic formulation: Let P; = (z1,y1)
and P, = (x2,y2). The chord rule computes (z,y) = P; + P> for the non-trivial combinations and
P1 7é P2 as

w(xy — x9)* = 2125 + 2Twe — 2y192 + a1 + x2) + 20
y(z1 — 22)% = Bwoz? + 23 + a(38xy + 22) + 4b)y2 — (3w123 + 23 + a2y + 322) + 4b)y1.
The tangent operation yields the coordinates for (x,y) = P; + P, = 2P;:
z(4y?) = (32% + a)® — 8z1y?
y(2y1)? = 2§ + baxt + 20023 — 5a22? — 4abe — a3 — 8b?
The j-invariant is j = 1728(4a®)/A.

A particularly elegant perspective gives Fx(«, 8) := Ex[—3c«, 2] with char K # 2,3 and «, 3 € K. We
derive A = o® — % and j = o3/A. Equip K? with a KX-action via A(-,-) = (A*-,A5.). j maps the
K*-equivariant filtration of K? to a filtration of P (K)
K2 > K2-{0} > K2-{A=0} D> (K¥)?-{A=0}
1J 1J LJ
P, (K) > K > K-{0,1}

2 Meromorphic functions on a curve

Let K be algebraically closed. Let f € K|x,y,w]q irreducible define a projective curve Cx(f). We
define K¢z, y, w| := K[z, y, w]/(f) = B, K[z, y, w]i, the field of fractions is K¢ (x,y,w), its subfield the
meromorphic functions on Ck(f) is K(z,y,w)o := {{ € K(z,y,w) : 3d such that g,h € K|z, y, w]a}.

The group of divisors is Div C, a free abelian group on Ck(f). Elements D € Div C are sums akin
D =3 pecx) mp[P], with coefficients mp € Z and only finitely many non-zero. degD := > np. A
partial ordering on Div C' is given via D > 0 < np > 0 for all P.

The intersection number is i(P, f N g) := dimg K[X,Y]p/(f, 9).
For ¢ = ¥ € K(z,y,2)o on C we define

div ¢ := > iPCn{g=0}[P] - > i(P,C N {h=0})[P).

P:f(P)=g(P)=0 P:f(P)=h(P)=0

According to Bezout, deg f degg = deg f degh so deg div ¢ = 0. For D € Div C we define the vector
space L(D) = {¢ € K(z,y,w)p : degyp + D > 0}. Riemann-Rocht Jg € Z so that degD +1 —g <
dim L(D) < oo, equality iff deg D > 2g — 2, g being defined thereby as the genus of the curve C.

larguing with the derivatives, the cubic curve is singular for A = 0
2projecting down from Fg(a,b) = {(z : y : w) € P3(K) : y?w = 23 + azw? + bw3} via w — 1 while O = (0 : 1 : 0)
represents the only class for w =0
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Figure 2: Two examples of singular curves: Ex(0,0) with cusp, Fx(—3,2) where A = 0 with double
point.

Declare Divg C := {D € Div C : deg D = 0}, and the group of principle divisors is P(C) := {D €
Div C : 3¢ with div ¢ = D}.
P(C) <« Divg C « Div C

Let f be an non-singular curve of genus 1, defining (Ex,O), for some selected point O as the neutral
element. Then, the Picard group Picy C' :=Divy C/P(C) is isomorphic to (Ex, O), via P < [P] — [O].
To see that P + S < [P + S] — [O] is compliant, consider the meromorphic function ¢ = % e P(C),
where [; is the line going thru P, S and an implied third point R, and Iy the line intersecting R, O and
P+ S. div o =[P]+[S]+[R] - [R] = [O] — [P+ S]. Hence, in Picy C' we have [P]+ [S] ~ [P+ S] —[O].

3 Algebraic proof for group structure

In projective space, one considers the space of homogeneous cubic forms having 8 fixed points (in general
position) in common. This space is spanned by AF' + uG = 0. By Bezout F and G have 3-3 = 9 common
intersection points.

As done before, we are concerned showing for points on a Ck(f) the equality T'= S for S = (P + Q)R
and T = P(Q + R). ”"Multiplication” with O yields then associativity.

So, we define the form F' (G similar) to be the product of three adequate lines, e.g. combines the lines
through P/Q, O/QR and P + Q/R. Then, we apply Bezouts argument above to pairwise combinations
of the cubic curve form itself f, F, and G.

4 p-Reduction

The p-adic norm | - |, assigns 0 — 0, and reduced p"% € Q + p~", and satisfies the ultrametric
inequality e |r + s[, < max|r|, [s|,, and obviously e |rs|, = |r|,|s[,. The subring Q) <; = {r €
Q :|r|, < 1} C Q contains the p-integral elements in which analogous Q)| <1 is an ideal. Hence, we
well-define the ring homomorphism g, : Q) <1 — F)

w™! modp n=0

u
duced p"—
1”eucepuH{O n>0

Let prime p > 2. The p-reduction of Eg(a) — Er,(a) with p { A works via representing (z : y : w) €
FEg(a) with (Z,y,w) so that e |Z|,,|j|p, |w|, <1 and e at least one of which has |- |, = 1, and e applying



the non-obvious group homomorphism
Qp(f» Y, ﬁ)) = (Qp:f7 0pY, pr)~

More intuitive is the equivalent reduction: Let Egla,b] so that a,b € Z and |A| minimal 3. Consider the
p-reduction Ep,[a,b] C IF]% U oo with a,b and the cubic form being interpreted =,. The following cases
can occur:

type of reduction ‘ A=, —2ab=, isomorph #ZEF,
good, non-singular #0 Er, ?
cusp 0 0 Ly, p
nodal; rational tangents 0 g Ly p—1
nodal; non-rational tangents 0 #0 ok p+1

Hasse: |ap :=p+1—#Er,| <2,/p

Take an elliptic curve Eg(a) in Weierstass form with integral coefficients. Then A € Z. Eg(a) is in
global minimal form, if for all primes p with p™ | A, the exponent n (equivalently |Al,) is minimal
among all admissable coordinate transforms. Neron: for all Eg(a) such a global minimal form exists.

Assume Eg(a) is in global minimal form. The L-function of Eg(a) is defined as Lg : C — C by

1 1
LE(S) = H —s H —s 1-2s°
pia 1T WP LA A p

Birch, Swinnerton-Dyer Conjecture: 1 (s) has an analytic continuation to entire C. The order of van-
ishing at s = 1 is r the rank* of Ey.

5 Ly is finitely generated

Let k : Z — N obtain the values m — #{p € N prime : p|m}.

Let G be an abelian group. A norm on G is a map |- | : G — R{ satisfying e #{g : |g| < n} < oo for
all n € N o |mg| = |m||g| for all m € Z and e |g + h| < |g| + |h| for all g,h € G. An abelian group G is
finitely generated < G is equipped with a norm and the index (G : nG) < oo for some n > 1.

In the following Egp denotes an elliptic curve oringinating from a non-singular cubic curve. The strategy
to prove Mordell 1922/23, Ejy is finitely generated, i.e. Eg = Tors Fg x Z" where r denotes the rank of
Eg follows the above remark.

The 2-isogeny ¢ : E[a,b] — E[—2a,a? — 4b] which maps (z,y) — -5 (y* y(z? — b)) has kernel {O, (0,0)}.
The homomorphism « : E[a,b] — Q*/Q*? is given by

O e
(0,0) — b mod Q*?2
(r,y) — =z mod Q*?2

Then [im a| < 2°®)+1. The sequence E[a,b] 2 F[—2a, a® — 4b] % Q* /Q*? is exact. Furthermore, there

is a homomorphism ¢’ so that E % E' = E[—2a, a® — 4b] 2> E is multiplication by 2 on E. We deduce
that (Eg : 2Eg) < 2¢M0+r(@*=40)+2 o for non-singular E = E[a, b] with a,b € Z.

The naive height is hg : Ep — R with (2,y) — logmax p[ [¢| =: |E|o and O — 0. Under multiplica-
tion by 2 we have ho(2P) = 4ho(P)+0(1), also #hy ' (¢) < co. The canonical height / : Eg — R{ com-
poses as P — lim ho(f:P), which satisfies (b — ho)(P) < O(1) and h(2P) = 4h(P), again #h~(c) < oco.
h is not a norm on Eg, however either h(P £ Q) < h(P) + h(Q) holds. In the proof via contradiction it

suffices to go with one.

3obtainable via the j-invariant substitutions a — A*a, b — \6b
4will be defined soon



6 On the rank

Up to today, there exists no effective method to compute the rank for an elliptic curve. Let Eg = Ela, b]
and a,b € Z. Denote a basis of Eg/Tors Eg ~ Z" with Py, ..., P,. There exists a unique symmetric
positive definite bilinear form (-,-) : Z" x Z" — R with (P, P) = h(P). As a consequence (P,Q) =
1(h(P+ Q) —h(P)—h(Q)). With repect to the basis, the form is described by coefficients ¢;; = (P, P;).
The elliptic regulator Rg,q := det(c;;) is independent of the choice of basis. If the rank » > 0 then
while T' — oo assymptotically

log" T
#{P € Eg : ho(P) < T} ~ |Tors Eg|Q, | -2,
Re/g

where €),. is the volume of the unit ball in R”. In the limit hy can be exchanged by h.

Investigating curves of the form y* = (z —a)(z — 8)(z — ) with roots in Z, and reducing the image space
of a certain homomorphism Eq/2Eg — Q* /Q*?2 but leaving the map injective yields a more sofisticated
bound for the rank

r < #{p € N prime : exactly one of p|a—0, p|5—~, pla—y}+2#{p € N prime : p|a—BAp|S—yAp|a—v}—1.
The Hasse principle is expressed in
E
H 7# T o log" R
2<p<R.ptA p

A result delivered by Weill F(K) is finitely generated.

7 Torsion points on Eg

Eg is either 2 S or & S x Zy 5. Eg being a subgroup implies that Tors Eg C Tors S! x Zy. Mazur 1975
discussed the possible types of the torsion part of Eq:

Z.  ke{l,2,...,10,12}
Tors Fg =
Ors =0 { Ty x 7y, k€{2,4,6,8)
Lutz-Nagell 1930 et Eg(a) be given in Weierstrass form with coefficients @ € Z° and a; = 0. All torsion
points P = (z,y) have integer coordinates. For prime p { A the restriction g,

ITors F, 18 Injective. For

elliptic curves of the form Eg[a,b] with a,b € Z we have moreover y = 0 or y2|A.
Ezample: Consider Egla,b] for different values a,b € Z, ordered as in figure 1:
a b ‘ A J ‘ Tors Egla,b] rank

55296

2 15 =

12| 104 =M
1 0| 4 1728 0

8 Elliptic curves over C

This section needs major revision.

H={z€C:Imz > 0}. For 7 € § we define the period lattice L, = Z7 + Z. Every elliptic curve E(C)
corresponds to a complex torus T, = C/L, in that we find a (unique?) meromorphic L. -periodic, i.e.
elliptic function, o : C — C satisfying ¢'? = 49> — gop — g3p. Evaluating (p, ¢')(2) for z € T, yields

Shave a look at the plots



points on .... T, is the fundamental parallelogram. The Weierstrass p function relative to L. is
given by @(Z) = 7%2 + ZW&—L —{0} 1w)2 - ﬁa so that p/(z) = _2Zw€LT ﬁ

Any elliptic function f is in C{gp, p'}. For any u € C the elliptic function p — u has either two simple
zeros or one double zero. The latter is the case for u; = p(1), us = p(%) and uz = p(*£7). The zeros of
@' are at %{1, 7,1+ 7}, all being simple.

p satisfies the differential equation o = 40 — g2 — g3, where thru Gi(L,) = Y o/ oy oF fork >3
the coefficients are g2 (L, ) = 60G4 and g3(L,) = 140Gs. In fact 4w — gow —g3 = 4(w—uq ) (w— uz)(wfu;;)
= non-singular.

. /.
The map ¢ : T, — E(C) C Py(C) given by z — { (p: ¢ :1)(2) 2Ly is a group isomorphism,

(0:1:0) z€ L,
p(z1) e'(z1) 1
o(22) ¢(z2) 1| =0forall z1,20. A =g3— 27g3 and j = 1728¢3 /A
p(z1422) —p'(z1+22) 1

In fact p(2) — &% = Y5, (k + 1)Grya(Lr)2".

9 Modular Forms, Cusp Forms

Let T = (§1)and S = (% §). T and S generate SL(2,Z). The action of I' = SL(2,Z)/{£1} on $ is
defined via (a Y1 — ‘”+b Let R C $ be a fundamental domain with respect to SL(2,Z)/{£1} acting.

An unrestricted modular form f : §§ — C of weight k satisfies f(y7) = (et + d)* f(7) for all v =
(Z Z) € SL(2,Z). Due to the periodicity f(7) = f(r+1), we put 7 = p+io and may expand f in Fourier
series in the variable p, to yield the g-expansion of f

= Z cnq”  with =exp2mit and ¢, = / flp)g™™ dp.
nez _57%]
As 0 — oo tends ¢ — 0, hence, we the expansion is around co. If ¢z_ = 0 then f is a modular form.

If also ¢ = 0, we call f a cusp form. Prominent examples are

f fon ‘ g-expansion

i T 744 + 196884q + 214937604° 1 ...

A (et +d)2A | (2m)12 (g — 24¢% + .. .) [alternatively (2m)'2q [T(1 — ¢™)%%]
T k 1 n

Gr (et +d)?*Gy, | 26(k) * * * +2(]€2 ;))' DN =g

For a modular form f of weight k& we have

1 1 !
Uoo+§/vi+§vp+zv‘r:

12
The Mellin transform of a nice function f : R™ — C is a function g : C — C with g(s fR+ ts%.
The gamma function I'(s) is the transform of exp —-. We let a cusp form f undergo the transformation
along the line iR*, and denote the result Af(s) := fR+ 0%9% = (27)7°I'(s)Ly(s), where Ly(s) =

o o= is the L-function of the cusp form f

Prove or disproove that every Fq is modular, i.e. Lg equals to Ey for some cusp form f and get
1.000.000$.
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