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ABSTRACT

We study the smoothness of quasi-uniform bivariate subdivision. A quasi-uniform

bivariate scheme consists of different uniform rules on each side of the y-axis, far enough

from the axis, some different rules near the y-axis, and is uniform in the y direction. For

schemes that generate polynomials up to degree m, we derive a sufficient condition for Cm

continuity of the limit function, which is simple enough to be used in practice. It amounts

to showing that the joint spectral radius of a certain pair of matrices has to be less than

2−m. We also relate the Hölder exponent of the m-th order derivatives to that joint

spectral radius. The main tool is an extension of existing analysis techniques for uniform

subdivision schemes, although a different proof is required for the quasi-uniform case. The

same idea is also applicable to the analysis of quasi-uniform subdivision processes in higher

dimension. Along with the analysis we present a ‘tri-quad’ scheme, which is combined of

a scheme on a triangular grid on the half plane x < 0 and a scheme on a square grid on

the other half plane x > 0 and special rules near the y-axis. Using the new analysis tools

it is shown that the tri-quad scheme is globally C2.
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1. INTRODUCTION

The smoothness analysis of subdivision schemes is mostly confined to the case

of uniform schemes on uniform grids. In the uniform case there are several well es-

tablished analysis tools such as the Fourier analysis approach (see e.g., [3, 4, 6, 7]),

the z-transform tools (see e.g., [2, 9, 10]) using difference schemes and in terms of

the joint spectral radius of the local subdivision operators (see e.g., [14, 15, 24]).

A special non-uniform analysis is required in the analysis of subdivision schemes

over meshes of general topology. In this case, there is a special structure and a

special analysis around ‘extraordinary vertices’, using eigensystem analysis of the

local subdivision operator, and using a special parametrization by the ‘characteris-

tic map’ (see e.g., [8, 22, 23, 26]). Recently, non-uniform subdivision schemes have

been analyzed, by extending the tools of difference schemes to non-uniform schemes

over uniform grids [19] and to schemes over non-uniform grids [5, 13, 25]. In the

present work we are interested in the analysis of quasi-uniform subdivision schemes.

Such schemes may be of interest when matching two patches, where in each patch

a different uniform subdivision scheme is applied, or in designing a scheme interpo-

lating a curve on the surface (see [17, 16]). A univariate study of piecewise uniform

schemes is presented in [11]. The analysis presented in this paper combines a few

ideas of the above mentioned tools into a new method which is specially designed

for quasi-uniform subdivision schemes. It combines eigensystem analysis with a

joint spectral radius check and implicit divided differences considerations, and it

also involves non-stationary matrix subdivision analysis. Along with the general

discussion we consider a specific quasi-uniform scheme, the ‘tri-quad’ scheme, which

is combined of Loop scheme on a triangular grid on the half plane x < 0 and of

Catmull-Clark scheme on a square grid on the other half plane x > 0. A scheme of

3



FIG. 1 The tri-quad grid.

this type has already been considered in [21], where the benefit in using ‘tri-quad’

meshes is explained. The particular scheme used in [21] is defined on meshes of

general topology, composed of triangular and quadrilateral faces. It is not a C2

scheme, yet it apparently produces limit surfaces with everywhere bounded cur-

vatures. In this work, to properly define the special rules for the tri-quad scheme

near the y-axis we employ a recent procedure suggested in [18]. The resulting tri-

quad scheme accompanies the definitions and the assumptions of the general theory

presented in the next section, and is used to demonstrate the analysis tools. It is

shown that the new tri-quad scheme is globally C2.

2. DEFINITIONS, ASSUMPTIONS AND THE TRI-QUAD SCHEME

We consider a quasi-uniform grid X ∈ IR2, namely a grid which is uniform in

each of the half planes, x > 0 and x < 0, and such that EX ≡ {(i, j + 1)|(i, j) ∈

X} = X , 2X ⊂ X and ∪∞
n=02−nX = IR2. The leading example of a quasi-uniform

grid in this paper is the tri-quad grid in Figure 1.
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Let l(X) denote the space of all control point sequences l(X) = {P | P : X →

IR}. The subdivision operator S is a linear operator on l(X), S : l(X) → l(X) . A

stationary subdivision scheme is defined as the repeated application of S to given

control points P ∈ l(X).

We say that S is convergent, if for every P ∈ l(X), there exists F ∈ C(IR2)

(called the limit function) such that

lim
n→∞

∥∥SnP − F
(
2−n·)∥∥∞,X∩2nD = 0, (1)

for any open and bounded domain D ⊂ IR2. We denote S∞P = F . We also require,

as part of the definition of uniform convergence, that S∞P is non-zero for some P .

Notice that although SnP is formally defined as a sequence over X , we associate

the value SnP (x) for x ∈ X , with the value of the limit function at 2−nx, as implied

by (1).

We say that S is Cm if S∞P ∈ Cm(IR2) for any P ∈ l(X). Furthermore, we

say that S is Cm+α if the m-th order derivatives of S∞P are Hölder continuous of

order α for any P ∈ l(X).

A quasi-uniform bivariate scheme consists of different uniform rules on each

side of the y-axis, far enough from the axis, some different rules near the y-axis,

and is uniform in the y-direction. We assume, of course, that S is Cm continuous

away from the y-axis, and that the bivariate scheme generates Πm, the space of

bivariate polynomials up to degree m. The last requirement implies the existence

of an ’inverse’ Q of S∞ on Πm. The important properties of Q are summarized in

the following theorem, proved in [18]. To state the result we introduce the notion

of leading coefficient preservation. We say that Q : Πm → l(X) preserves leading
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coefficients if

f ∈ Πk ⇒ |Qf(x) − f(x)| = o(‖x‖k) , as ‖x‖ → ∞ , x ∈ X , (2)

for all k ≤ m. For example, any operator of the form Qf(x) = f(x)+Df(x), where

D is a linear differential operator, D1 = 0, preserves leading coefficients. Here, for

P ∈ l(X) and x ∈ X , P (x) denotes the the entry of P attached to x. We also

introduce the dilation operator σ,

σf = f
( ·

2

)
.

Theorem 2.1. [18] If S is a convergent subdivision scheme, S∞ is an injection,

and Q : Πm → l(X) preserves leading coefficients, then

SQf = Qσf , ∀f ∈ Πm , (3)

if and only if

S∞Qf = f , ∀f ∈ Πm . (4)

Theorem 2.1 reduces (4), which is the formal notation for polynomial genera-

tion, to the condition (3), in which S appears as a linear term. This is useful for

the construction of new subdivision schemes. Once we fix Q, condition (3) can be

translated into a system of linear equations, from which we deduce the subdivi-

sion weights. This technique is demonstrated in [18], and is used in the following

construction of the tri-quad scheme.

From (3) we also get important information about the eigenvalues and the eigen-

vectors of S. Considering a monomial f = xiyj , with i + j ≤ m, it follows that

σf = 2−(i+j)f and thus

SQ{xiyj} = Qσ{xiyj} = 2−(i+j)Q{xiyj} , i + j ≤ m . (5)
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FIG. 2 The scheme masks away from the y-axis: Catmull-Clark scheme on the

right and Loop scheme on the left.

I.e., Q{xiyj} is an eigenvector of the scheme for i + j ≤ m with eigenvalue 2−(i+j).

Some examples of the operator Q for different subdivision schemes are given in [18].

Example 2.1 (The tri-quad scheme - construction). Considering the tri-quad

grid in Figure 1, we would like to define a quasi-uniform scheme over this grid which

is the the tensor product cubic B-spline scheme, or the Catmull-Clark scheme [1],

on the right half plane, and the C2 quartic three-directional box-spline scheme,

or the Loop scheme [20], on the left half plane. The masks of these schemes are

depicted in Figure 2.

The goal is to define special rules on the y-axis and near it so that overall the

scheme will be C2, i.e., as smooth as the right and left schemes. These special

rules are constructed together with an operator Q, which also requires a special

definition near the y-axis, so that the condition SQ = Qσ holds for Π2 over the

entire plane. The operator Q away from the y-axis is defined as the appropriate Q
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FIG. 3 The scheme near the y-axis: (a) The stencil for a new value at old grid

points on the y-axis. (b) The stencil for a new value at new grid points on the y-

axis. (c) The stencil of the operator defining temporary values on the y-axis before

the application of the Loop scheme on x < 0.

operator for the right and left uniform schemes, i.e.,

Qf = Q+f = f − 1
6
fxx − 1

6
fyy , x ≥ 0 ,

Qf = Q−f = f − 1
6
fxx − 1

8
fyy , x < 0 .

It is easy to verify that Q+ and Q− satisfy the required equation (3), with m = 2,

for the right and left schemes respectively. Given this choice of Q, the special

subdivision rules near the y-axis are defined by requiring the conditions (5), for

m = 2. The equations coming out of (5) are solvable, but not uniquely. The

challenge is to find a scheme of the smallest possible support which fulfills (5). A

scheme with positive weights and of small support, though probably not the smallest

possible, is described by the rules shown in Figure 3. Note that the convolution

stencil (c) is only used for calculating temporary values before the application of

the uniform left scheme.

By Theorem 2.1 it then follows that this scheme generates polynomials in Π2. It
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is now left to be shown that this scheme generates C2 limit functions over the entire

plane. We note that it is possible to define a scheme that generates polynomials up

to degree 3, but this cannot improve the smoothness beyond C2.

Remark 2.2. The choice Q = Q+ on the y-axis is somewhat arbitrary. Different

choices of Q lead to different subdivision rules. By experimenting with other choices

of Q on the y-axis, we found that for some of them there does not exist subdivision

schemes S with positive weights. (e.g. Q = Q− or Q = Q−+Q+

2 on the y-axis).

With Q = Q+ on the y-axis we were able to get a subdivision scheme that consists

of only three special rules, in which all weights are positive.

3. THE ANALYSIS PROCEDURE AND THE TRI-QUAD EXAMPLE

In the following, we describe the procedure for checking whether a given quasi-

uniform scheme S is Cm. We assume that S generates polynomials up to degree

m, in the sense that (3) is satisfied for some Q. The justification of the different

steps is given in the following sections.

First we recall (see [25]) that the local subdivision matrix that maps a region

around the origin to itself must satisfy the necessary conditions for Cm smoothness.

Namely, that its eigenvalues are (1, 0.5, 0.5, . . . , 2−m, . . . , 2−m) and each of them

corresponds to an eigenvector with a polynomial as the limit function. The rest of

the eigenvalues must be strictly smaller than 2−m.

The analysis procedure:

1. Let L ⊂ X denote a subset of mesh points around the origin such that the

values of the limit function in [−1, 1] × [0, 1] depend only on control points

in L. Furthermore, the values at iteration 1 in L and in EL, namely SP |L
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and SP |EL, depend only on the initial values in L, P |L, where E is a shift

operator, EL = {(i, j + 1)|(i, j) ∈ L}.

2. Let A denote the local subdivision operator taking values in L to values in L

after one subdivision iteration. Let B denote the operator taking values in L

to values in EL.

3. Using the left and right eigenvectors of A, form a basis V for the vectors of

values in L such that the matrix form of A in the new basis is

Ã =

⎡
⎢⎢⎣

Λ C0

0 Y0

⎤
⎥⎥⎦ , (6)

Where Λ = diag(1, 0.5, 0.5, ..., 2−m, ..., 2−m). One way to do it is to compose

the basis V from the (m + 1)(m + 2)/2 right eigenvectors,

Qf |L , f = xiyj , 0 ≤ i + j ≤ m , (7)

and a basis of the null space of the corresponding left eigenvectors.

4. From the polynomial generation assumption about the scheme, it turns out

that the matrix form of B in the basis V is

B̃ =

⎡
⎢⎢⎣

Θ C1

0 Y1

⎤
⎥⎥⎦ , (8)

where Θ is an upper-triangular matrix that has the same diagonal as Λ.

Moreover, Θ has certain zero values above the diagonal, creating such diagonal
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blocks of sizes 1, 2, 3, 4, ..., e.g., for m = 2

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ ∗ ∗ ∗

0 0.5 0 ∗ ∗ ∗

0 0 0.5 ∗ ∗ ∗

0 0 0 0.25 0 0

0 0 0 0 0.25 0

0 0 0 0 0 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

5. A sufficient condition for Cm continuity is that the joint spectral radius of Y0

and Y1, ρ∞(Y0, Y1), is strictly less than 2−m, where

ρ∞(Y0, Y1) =

lim
k∈ZZ+\0

(
max

{‖Yεk
Yεk−1 · · ·Yε1‖∞ : εi ∈ {0, 1}, i = 1, ..., k

}) 1
k . (10)

Moreover, if ρ∞(Y0, Y1) = 2−(m+α), 0 < α ≤ 1 then the m-th order derivatives

of the limit function are Hölder continuous with exponent α− ε for arbitrarily

small ε > 0. Of course, this only holds if the limit function away from the

y-axis is known to have that Hölder exponent.

Remark 3.1. Notice that the limit of the sequence in (10) always exists. Let

ρ[k]
∞ (Y0, Y1) =

(
max

{‖Yεk
Yεk−1 · · ·Yε1‖∞ : εi ∈ {0, 1}, i = 1, ..., k

}) 1
k . (11)

Fix k > 0. For every n > k, let n = k · m + r, where 0 ≤ r < k. It is easy to see

that

ρ[n]
∞ (Y0, Y1) ≤ ρ[r]

∞(Y0, Y1)
r
n ρ[k]

∞ (Y0, Y1)
k·m

n ,

therefore,

lim sup
n∈ZZ+\0

ρ[n]
∞ (Y0, Y1) ≤ ρ[k]

∞ (Y0, Y1), ∀k ≥ 0.
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Since all sequence elements are greater or equal to the limsup, the limit exists. In

particular, we can compute an upper bound for the joint spectral radius ρ∞(Y0, Y1),

by estimating the norms of all possible products of finite length k of Y0 and Y1.

I.e.,

ρ∞(Y0, Y1) ≤ ρ[k]
∞ (Y0, Y1). (12)

Remark 3.2. The condition ρ∞(Y0, Y1) < 2−(m+α), in view of the special basis

V used in (6), implies that the mth degree Taylor expansion coefficients of S∞P

at dyadic points on the y-axis are all uniformly bounded. This is the main idea

behind the theory presented here, the detailed proof is presented in §6.

Example 3.3 (The tri-quad scheme - C2 analysis).

Let us apply the above analysis tools for the tri-quad scheme presented above. The

set L is the set of |L| = 45 points

L = {(i, j) : i = 0, 1, 2 , −4 ≤ j ≤ 4 , j ∈ ZZ}∪

{(i, j + 0.5i) : i = −1,−2 , −4 ≤ j ≤ 4 , j ∈ ZZ} .

The matrices A and B are evaluated as follows: First we choose an ordering of

the points in L, L = {(i1, j1), · · · , (i|L|, j|L|}. An entry Ak,� in A corresponds to a

pair of points ((ik, jk), (i�, j�)). Applying the subdivision scheme to initial data set

P = δ(i�,j�) which is 1 at the point (i�, j�) and zero elsewhere, we have

Ak,� = (Sδ(i�,j�))(ik,jk), k = 1, · · · , |L|, � = 1, · · · , |L|.

The entries of the matrix B are

Bk,� = (Sδ(i�,j�))(ik,jk+1), k = 1, · · · , |L|, � = 1, · · · , |L|.

The matrices Ã and B̃ are just the representation of A and B respectively in

another basis V . The construction of this basis is described in item 3 of the analysis
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procedure above, and it involves the computation of the polynomial eigenvectors of

S by (7).

The upper-left block Θ of B̃ for the tri-quad scheme is

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.1859 0.0476 −0.0039 0.0271 −0.0181

0 0.5 0 −0.0036 −0.1398 0.0921

0 0 0.5 −0.0968 0.0241 −0.0216

0 0 0 0.25 0 0

0 0 0 0 0.25 0

0 0 0 0 0 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

A bound for ρ∞(Y0, Y1) may be estimated by ρ
[k]
∞ (Y0, Y1) using Remark 3.1, and

this is used to compute a lower estimate αk = −2− log2(ρ
[k]
∞ (Y0, Y1)) of the Hölder

exponent. We obtained

α ≥ α18 = −2 − log2(ρ[18]
∞ (Y0, Y1)) = 0.5942. (14)

Hence, we deduce that the tri-quad scheme is at least C2.5942. A straightforward

extrapolation of the values αk as a function of 1/k indicates that limk→∞αk ∼ 1,

leading to the conjecture that the tri-quad scheme is C3−ε for any ε > 0. This

conjecture is, at least, in agreement with the spectral radii of Y0 and Y1, ρ(Y0) =

ρ(Y1) = 1
8 .

The following sections justify the above analysis procedure.

4. THE MATRIX SUBDIVISION SCHEME (A, B)

By assumption, the subdivision scheme is Cm away from the y-axis, and all we

need is to check the convergence and the smoothness near the y-axis. We do it by

monitoring the values generated in a wide enough strip of mesh points along the
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y-axis. Specifically, we consider the strip

J = {(i, j) : −M ≤ i ≤ N , j ∈ ZZ } =
⋃

j∈ZZ

EjL . (15)

By the definition of L, the subdivision scheme S takes values in J to values in

J in the next iteration,

Sfn|J = fn+1|J .

Restricted to J , we view S as a univariate vector-valued subdivision scheme, as

follows:

To each integer point (0, j2−n) on the y-axis we relate the vector of data values

vn
j = fn|EjL. The operators A and B defined above constitute a vector-valued

binary subdivision scheme with the 2-term mask (A, B), namely,

vn+1
2j = Avn

j , vn+1
2j+1 = Bvn

j . (16)

This scheme is equivalent to S near the y-axis, in the following sense. First, every

set of control points generated by S can be generated by the vector-valued scheme,

simply by taking as initial data to the vector-valued scheme, groups of control

points over integer shifts of L in the y-direction, v0
j = P |EjL. Second, the values

{vn
j }2n−1

j=0 at iteration n of the vector scheme are the same as the values generated

by S at the n-th iteration if the initial data for S over L is taken as v0
0 .

Also, by the definition of L, the strip J is wide enough to capture the behavior

of the mth order derivatives on the y-axis. If we show that the vector-valued scheme

with the mask (A, B) generates bounded sequences, then we know that S generates

bounded values. If the vector-valued scheme is C0, i.e., generates C0 univariate

vector-valued functions, then it follows that S is C0 along the y-axis as well. Yet,

the mask of the vector-valued scheme has only two terms, and, as such, it cannot

produce a C0 limit from an arbitrary vector-valued data. Even if we find a way to
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overcome this hurdle, we cannot push it further to higher order smoothness, since

the vector-valued scheme is univariate and we are also interested in derivatives in

the x-direction and in mixed derivatives as well.

Here comes into play the representation of the vector-valued data in the eigen-

vectors basis. The idea here is, that knowing the coefficients in the eigenvectors

expansion at a point, gives us the Taylor expansion (up to degree m) of the limit

function at that point. I.e., the coefficient of the monomial eigenvector Q[xiyj ] with

eigenvalue 2−(i+j) ≥ 2−m is the coefficient of xiyj in the Taylor expansion. The

eigenvectors corresponding to eigenvalues smaller than 2−m do not contribute to the

mth order derivatives. At a given dyadic point we know exactly how the coefficients

of the monomial eigenvectors evolve with the iterations. The matrix subdivision

scheme with the mask (Ã, B̃) fills up the coefficients of these eigenvectors on finer

grids.

We want to show that the coefficients corresponding to the main eigenvalues

remain bounded or tend to zero at a certain rate during the refinement process.

For example, the constant term must remain bounded. Linear terms at refinement

level n, multiplied by 2n must remain bounded. In general, the coefficient of the

monomial eigenvector Q[xiyj] corresponding to the monomial xiyj, should stay

bounded when multiplied by 2(i+j)n. All the rest of the coefficients of eigenvectors

must tend to zero when multiplied by 2n(m+α), α > 0. If these conditions are

satisfied, we can show that the m-th order derivatives of S are Hölder continuous

of order α.

In order to study the rate at which certain coefficients tend to zero, we re-

scale the vector-valued scheme (Ã, B̃), multiplying by corresponding powers of 2n

when represented in the basis V . We obtain a non-stationary vector-valued scheme
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(An, Bn) where the masks (An, Bn) depend on the iteration level n, through

An = Δn+1ÃΔ−n, Bn = Δn+1B̃Δ−n,

where Δ is a diagonal matrix with the diagonal values

diag(Δ) = (1, 2, 2, 4, 4, 4, . . . , 2m, . . . , 2m, 2m+α, . . . , 2m+α). (17)

Our goal, then, is to show that the non-stationary vector-valued scheme is stable,

i.e. it generates values which are uniformly bounded, given bounded initial data.

It is easy to see that An converges geometrically to a matrix with the shape

A∞ =

⎡
⎢⎢⎣

I 0

0 2m+αY0

⎤
⎥⎥⎦ .

Also, due to the shape of Θ (9), Bn also converges with the same speed to

B∞ =

⎡
⎢⎢⎣

I 0

0 2m+αY1

⎤
⎥⎥⎦ .

The particular issue of the stability of non-stationary subdivision schemes has

been studied in [12]. It turns out that the non-stationary scheme (An, Bn) is asymp-

totically equivalent to the limit scheme (A∞, B∞), and thus it is enough to check

whether (A∞, B∞) is stable. A necessary condition for the stability of the scheme

(A∞, B∞) is that the joint spectral radius of Y0 and Y1, ρ∞(Y0, Y1), does not exceed

2−(m+α).

5. Cm ANALYSIS AND HÖLDER CONTINUITY NEAR THE y-AXIS

In this section we relate the uniform rate of decay of coefficients of eigenvectors

of A to the Hölder exponent of continuity of the m-th order derivatives of the limit

function. We suppose that the limit function away from the y-axis is in Cm+α, i.e.,
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its m-th order derivatives away from the y-axis have Hölder exponent of continuity

0 < α ≤ 1.

Let us denote the Hölder constant of a function F in a domain U ⊂ IR2 by

H(F, α, U) = sup
x,y∈U,x �=y

|F (x) − F (y)|
‖x − y‖α

. (18)

We define a domain W as the pair of rectangles

W = ([−1,−1
2
] × [0, 1]) ∪ ([

1
2
, 1] × [0, 1]) . (19)

By the definition of L, the limit function on W depends only on the control

points in L. Assuming that the m-th order derivatives away from the y-axis are

Hölder continuous with Hölder exponent α, we get, from the linearity and the local

support of S, that

H(DmS∞P, α, W ) ≤ c‖P‖∞,L, (20)

for some c > 0, where Dm denotes any differential operator Dm of order m. It is

also easy to verify that for any domain U ,

H(F (λ·), α, U) = λαH(F, α, λU), ∀λ > 0. (21)

We want to study the Hölder constant of S∞P closer and closer to the y-axis,

H(DmS∞P, α, 2−nW ), n ∈ ZZ+. But S∞P = (S∞SnP )(2n·). Therefore, we get

using (21) that

H(DmS∞P, α, 2−nW ) = H(2mnDm(S∞SnP )(2n·), α, 2−nW )

= 2mn2αnH(DmS∞SnP, α, W ),

and then from (20), we have

H(DmS∞P, α, 2−nW ) ≤ 2n(m+α)c‖SnP‖∞,L. (22)
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Similarly, the limit function on 2−nE iW depends only on the values of SnP in

E iL, and by using (21) and recalling that S is y-direction shift invariant, we get

H(DmS∞P, α, 2−nE iW ) ≤ 2n(m+α)c‖SnP‖∞,EiL , ∀n ∈ ZZ+ , ∀i ∈ ZZ . (23)

Later on we use the above relations to prove that the Hölder constant of DmS∞P

is uniformly bounded in the domains 2−nE iW , n ∈ ZZ+, i ∈ ZZ. In the next section

we show that uniform Hölder continuity over the domains 2−nE iW implies Hölder

continuity over the entire plane.

6. UNIFORM HÖLDER CONTINUITY OVER THE PLANE

We now show how to deduce Hölder continuity over a domain from the uniform

Hölder continuity over subsets of the domain, provided that the closure of their

union covers the domain.

Since we assume Hölder continuity away from the y-axis, we restrict our atten-

tion to the strip [−1, 1]× [−∞,∞]. Define

U =
⋃

j∈ZZ

EjW = ([−1,−1
2
] ∪ [

1
2
, 1]) × (−∞,∞) .

Lemma 6.1 (Uniform Hölder continuity away from the y-axis). Let F : IR2 �→

IR denote a function which is continuous everywhere except maybe the y-axis. If

for all i ∈ ZZ, H(F, α, E iW ) ≤ c, then for any p = (p1, p2), q = (q1, q2) ∈ U such

that |p2 − q2| ≤ 1,

|F (p) − F (q)| ≤ 3c‖p− q‖α . (24)

Proof. Let p, q ∈ U , and let r denote the point with coordinates (p1, q2) ∈ U .

Since r and q only differ by their first coordinate, they belong to the same integer

shift of W , and therefore

|F (r) − F (q)| ≤ c‖r − q‖α. (25)
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We now observe |F (p) − F (r)|. In case p and r belong to the same integer shift of

W , we have that |F (p) − F (r)| ≤ c‖p − q‖α. Otherwise, we assume, w.l.o.g, that

r2 > p2. We now use the assumption that |p2 − q2| ≤ 1. For s = (p1, �r2�), we have

that

|F (p) − F (s)| ≤ c‖p− s‖α,

|F (r) − F (s)| ≤ c‖r − s‖α.

And, because ‖p− s‖, ‖r − s‖ ≤ ‖p− r‖, we get

|F (p) − F (r)| ≤ 2c‖p− r‖α. (26)

From (25) and (26) we get that

|F (p) − F (q)| ≤ 3c‖p− q‖α.

Corollary 6.2. Let n > 0. If for all i ∈ ZZ, H(F, α, 2−nE iW ) ≤ c, then

|p2 − q2| ≤ 2−n ⇒ |F (p) − F (q)| ≤ 3c‖p− q‖α, ∀p, q ∈ 2−nU.

Proof. Using (21), we have

H(F (2−n·), α, E iW ) ≤ 2−nαc.

From Lemma 6.1 it follows that ∀p, q ∈ U such that |2np2 − 2nq2| ≤ 1,

|F (2−n2np) − F (2−n2nq)| ≤ 3 · 2−nαc|2np − 2nq|α = 3c‖p− q‖α.

Lemma 6.3 (Uniform continuity near the y-axis). Let F : IR2 �→ IR denote a

function which is bounded and continuous everywhere except maybe on the y-axis.
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If for all i ∈ ZZ, and n ≥ 0, H(F, α, 2−nE iW ) ≤ c, then

H (F, α, ([−1, 1] \ {0})× (−∞,∞)) < ∞ . (27)

Furthermore, F may be redefined on the y-axis so that

H (F, α, [−1, 1] × (−∞,∞)) < ∞ . (28)

Proof. For p, q ∈ ([−1, 1] \ {0})× (−∞,∞) we would like to show that |F (p) −

F (q)| ≤ c̃|p−q|α. This is established by considering all the different cases of relative

locations of p = (p1, p2) and q = (q1, q2):

1. If p and q are far away from each other, we use the fact that F is bounded.

2. If p and q are not on the same side of the y-axis, we define r = (−p1, p2),

and use the triangle inequality |F (p)−F (q)| ≤ |F (p)−F (r)|+ |F (r)−F (q)|.

|F (p) − F (r)| can be bounded by Corollary 6.2 since p and r lie in the same

strip 2−nU . The term |F (r) − F (q)| will be estimated by cases 3,4,5 below.

3. The case p1 �= q1 and p2 �= q2, when p and q are from the same side of the

y-axis. We define r = (p1, q2) and use |F (p)−F (q)| ≤ |F (p)−F (r)|+ |F (r)−

F (q)|. That reduces the problem to the cases p1 = q1 or p2 = q2.

4. The case p1 = q1. If |p2 − q2| ≤ 1
2 |p1|, Corollary 6.2 does the job. Otherwise,

we define r1 further from the y-axis, and use |F (p) − F (q)| ≤ |F (p1, p2) −

F (r1, p2)| + |F (r1, p2) − F (r1, q2)| + |F (r1, q2) − F (q1, q2)|. The mid-term is

bounded using Corollary 6.2. The other terms are settled by case 5.

5. The case of p and q being on the same side of the y-axis and p2 = q2. This

case is established by defining intermediate points along the line segment

between p and q on the boundaries between dilations of U , and summing
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up the contributions. If p ∈ 2−mU and q ∈ 2−nU , n > m, we have, using

Corollary 6.2,

|F (p) − F (q)| ≤ 6c‖p− q‖α + 3c

n−1∑
m+1

(2−i − 2−i−1)α ,

where the above sum is set to zero if n = m + 1. If n > m + 1 we have

n−1∑
m+1

(2−i − 2−i−1)α =
1

2α − 1
(2−(m+1)α − 2−nα) ≤ ĉ‖p − q‖α .

The above considerations prove (27), i.e. uniform Hölder continuity over the split

domain Ũ = ([−1, 1] \ {0})× (−∞,∞). To extend the result to [−1, 1]× (−∞,∞)

we observe that (27) implies that for any sequence {p(n)} ⊂ Ũ converging to a point

(0, y) on the y-axis, there is a unique limit limn→∞ F (p(n)). The result (28) thus

follows by redefining F (0, y) as this limit.

All the above results lead to the main result of this paper:

Theorem 6.4. Assume that S is a Cm scheme away from the y-axis, and that

the m-th order derivatives of its limit function there have Hölder exponent of con-

tinuity 0 < α ≤ 1. Also, assume that (3) is satisfied for some Q : Πm → l(X). Let

Y0 and Y1 be defined as in (6),(8).

If ρ∞(Y0, Y1) < 2−(m+α), then S is globally Cm and the m-th order derivatives

of its limit functions have Hölder exponent α.

Proof. First we note, that in order to avoid the problem of unbounded sequences

of control points, it is enough to assume that the control points P are zero in J \L.

In view of Lemma 6.3, and since DmS∞P exists away from the y-axis, it suffices to

show that H(DmS∞P, α, 2−nE iW ) ≤ c, ∀n ∈ ZZ+, i ∈ ZZ. Equation (23) exhibits

the relation between the Hölder constant over the domains 2−nE iU and the values

of the control points over E iL, namely ‖SnP‖∞,EiL. It seems that we have to show
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that ‖SnP‖∞,EiL = O
(
2−n(m+α)

)
, which in general is false, so we have to be more

careful.

Let G denote the projection of values in L onto the subspace of the (m+1)(m+

2)/2 right eigenvectors of A, namely, span{ Qf |L , f = xiyj , 0 ≤ i+ j ≤ m}. All

the other eigenvectors of A are in ker(G). We note that G(SnP |EiL) consists only

of a combination of eigenvectors that correspond to polynomials of degree ≤ m in

the limit. Their m-th order derivatives are either zero or constant, and they have

zero Hölder constant. Therefore, we can reduce the discussion to data SnP |EiL

which is a combination of eigenvectors of A with eigenvalues smaller than 2−m, i.e.,

to (I − G)(SnP |EiL). It is easy to check, in view of the definition of the matrix

subdivision scheme (A, B), and in view of §4, that

‖(I − G)(SnP |EiL)‖∞ ≤ c(ρ∞(Y0, Y1) + ε)n , (29)

for any ε > 0. And this, in view of (23), implies that the m-th order derivatives of

S∞P have Hölder exponent α in IR2.

To complete the proof of Cm continuity we use the same method to prove this

result for all lower order derivatives of S∞P . To deal with the k-th order derivatives,

for k < m, we replace the definition of Δ in (17) by

diag(Δ) = (1, 2, 2, 4, 4, 4, . . . , 2k, . . . , 2k, 2k+1, . . . , 2k+1). (30)

Also, we redefine of the above projection operator G to be the projection onto the

subspace of the (k+1)(k+2)/2 right eigenvectors of A corresponding to monomials

of degrees ≤ k, namely, span{ Qf |L , f = xiyj , 0 ≤ i + j ≤ k}. In view of the

structure of Ã and B̃ in (6),(8), the arguments used for the m-th order derivative

can be repeated here, and the claim of the theorem is proved.
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7. CONCLUSIONS AND OPEN ISSUES

1. A simple smoothness check. In this paper, we have presented an algorithm

for checking the smoothness of quasi-uniform subdivision schemes. It is important

to note that the algorithm is simple to apply. It does not require the construction of

complicated difference schemes, neither it requires costly eigenvector analysis of the

subdivision matrices. The construction of the matrices involved in the algorithm

is done by applying the subdivision scheme to specific data. The only eigenvectors

needed in the construction correspond to the eigenvalues 1, 1
2 , . . . , 2−m, and are

given by (7).

2. The tri-quad example and beyond. The tri-quad mesh serves here as a case

study. We use it to demonstrate the construction of the scheme on the boundary

between two uniform regions with a different uniform subdivision scheme defined

on each. Then we apply the new smoothness check algorithm to the tri-quad

scheme. We are not aware of any other method for analyzing such a scheme. The

analysis procedure can be directly adapted, or suitably extended, to deal with many

other cases of quasi-uniform subdivision (for more examples see [18]). For example,

consider a quasi-uniform scheme in IR3, consisting of different uniform schemes on

each side of the xy-plane and some special rules near the xy-plane. The smoothness

check of such a scheme follows quite the same steps as the algorithm presented in

this paper, where in the end one has to estimate the joint spectral radius of four

matrices.

3. Necessary and sufficient condition? It is not clear whether the joint spectral

radius condition ρ∞(Y0, Y1) < 2−(m+α) is also necessary for Cm+α continuity. It is

certainly necessary for the stability of the vector-valued scheme (A∞, B∞) and thus
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for the stability of the non-stationary vector-valued scheme {(An, Bn)} defined in

§4. It turns out that if ρ∞(Y0, Y1) > 2−(m+α) then the scheme cannot be Cm+α,

but the case of equality is not clear.

4. The analysis of uniform schemes. There are well established analysis tools

for uniform multivariate schemes. One approach is via difference schemes ([2, 9,

10]) and the other is in terms of the joint spectral radius of the local subdivision

operators ([14, 15, 24]). The method presented here for the analysis of quasi-

uniform schemes is related to the second approach. The following result is merely

a presentation of the result in [15] in our terminology.

Let us consider a uniform scheme S on X = ZZ2, and let E1 and E2 denote the

shift operators E1L = {(i + 1, j)|(i, j) ∈ L}, E2L = {(i, j + 1)|(i, j) ∈ L}. Here

we choose L ⊂ X as the subset of mesh points around the origin such that the

values at iteration 1 in L, E1L, E2L and E2E1L, namely SP |L, SP |E1L, SP |E2L

and SP |E2E1L, depend only on the initial values in L, P |L. For (i1, i2) ∈ E ≡

{(0, 0), (1, 0), (0, 1), (1, 1)} let A(i1,i2) denote the matrix operator taking the vector

of values P |L to the vector SP |Ei2Ei1L.

To each point 2−n(i, j) ∈ 2−nZZ2 we relate the vector of data values vn
i,j =

SnP |Ej
2Ei

1L. The four matrices {A(i1,i2)} constitute a bivariate vector-valued binary

subdivision scheme generating all these vector sequences, namely,

vn+1
2i+i1,2j+i2

= A(i1,i2)vn
i,j , (i1, i2) ∈ E . (31)

The benefit in defining such a vector-valued scheme is realized when considered in

a special basis. Using the left and right eigenvectors of A(0,0), just as described in

the analysis procedure in §3, we form a basis V for the vectors P |L. In this basis,
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the matrices A(i1,i2) take the form

Ã(i1,i2) =

⎡
⎢⎢⎣

Θ(i1,i2) C(i1,i2)

0 Y (i1,i2)

⎤
⎥⎥⎦ , (32)

Let the joint spectral radius of the four matrices {Y (i1,i2)} be defined as

ρ∞(Y (0,0), Y (1,0), Y (0,1), Y (1,1)) =

lim
k∈ZZ+\0

(
max

{‖Y εkY εk−1 · · ·Y ε1‖∞ : εi ∈ E
}) 1

k . (33)

Theorem 7.1. Let S be a uniform bivariate binary scheme on ZZ2, and assume

that S maps Πm into itself and S∞ is an injection. Let {Y (i1,i2)}, (i1, i2) ∈ E, be

defined as above. If

ρ∞(Y (0,0), Y (1,0), Y (0,1), Y (1,1)) = 2−(m+α) , (34)

0 < α ≤ 1 then S is Cm and the m-th order derivatives of the limit function are

Hölder continuous with exponent α − ε for arbitrarily small ε > 0.

Proof. The proof relies on checking the decay of the differences of divided dif-

ferences of the data generated by S, as is done in [2, 9, 10], only without using

difference schemes. As in §4, condition (34) implies that the coefficients in the local

eigenvector expansion at all dyadic points 2−nZZ2, n ∈ ZZ+ are properly bounded.

I.e., the coefficients of the eigenvectors with eigenvalue 2−(i+j), corresponding to

the monomial limit function xiyj, i + j ≤ m, are O(2−n(i+j)), and the coefficients

of the other eigenvectors behave as O(2−n(m+α)), as n → ∞. We also observe

that each vector vn
i,j generated by the vector subdivision (31) represents a subset of

values generated by S. Hence, evaluating differences between the elements of vn
i,j

is the same as evaluating local differences on SnP near the point 2−n(i, j).

Unlike the quasi-uniform case, using the injectivity assumption, it follows by

[18] that the first (m + 1)(m + 2)/2 eigenvectors are polynomials (restricted to
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ZZ2). Moreover, the eigenvector corresponding to the monomial limit function xiyj ,

i + j ≤ m, is of the form (q(x, y) + xiyj)|ZZ2 , with q ∈ Πi+j−1. Since all divided

differences of order i + j + 1 of such eigenvector data are zero, we find out that the

differences of all divided differences of order m are O(2−nα), as n → ∞. Thus, the

result follows from the theory in [2, 9, 10].
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