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Abstract

Barycentric coordinates are one of the most basic matheatati
tools in graphics, as well as in many computational scienéés
though the formulas for simplices (triangles, tetrahedé $o on)
are widely known and routinely used, there has been no aetisf
extension of these to arbitrary convex polytopes despitietaqra
of potential applications. In this paper, we propose a smgbm-
putationally convenient formula of a canonical form of bamgtric
coordinates. These functions are rational, smooth andvoidie-
gree. Next, we extend the formulas for convex polytopes oot
convex functions. Finally, we present an application of/bantric
coordinates to free-form deformation.

1 Introduction

Introduced by Mobius in 1827 asass pointsto define a coordinate-
free geometry, barycentric coordinates over simplicesaavery
common tool in all sorts of computation. In addition to their
coordinate-free expressions, barycentric coordinategdremely
helpful for interpolating discrete scalar fields, vectotdseor arbi-
trary multidimensional fields over irregular tessellagothey nat-
urally interpolate values at vertices to the whole spacenitilin-
ear interpolation. Their use over triangles or tetrahednaitine
in graphics, be it in hardware or software, as well as in mahgro
applied fields such as in computational physics and mechaidc
the finite element method.

The graphics community has made extensive use of barycentri
coordinates since the beginning of the field. In early wonkyban-
tric coordinates were mostly for triangles, with applioas such
as polygon rasterization, texture mapping, ray-triangiersec-
tion in raytracing, spline patches, interpolation etc. Mogcently,
barycentric coordinates for tetrahedra have been usedt®mio-
lation of 3D fields for volume rendering or isosurface exti®,
as well as for simulation purposes since they define conmelire
ear basis functions over simplices. Data in even higher d#ioas,
such as for lightfield applications, also require apprdpriaterpo-
lation between discrete samples.

A natural question arises when interpolation is needed rovee
complex shapes, such as polygons or polytopes: can we etktisnd
notion of barycentric coordinates to arbitrary polytop@$® com-
mon way to deal with irregular polygons in 2D, or general poly
hedra in 3D, is to triangulate them first, and apply barycéeuo-
ordinates on each simplex. However this solution is unaetdp
for many applications: the results depend on the choiceia-tr
gulation, and contain unnecessary visual artifacts (dusntp C°
continuity).

Therefore, there is a need for defining a notiorgefieralized
barycentric coordinates, that would be valid for arbitnaoyytopes,
and would match the conventional coordinates for simpliG&gh
a generalization must combisamplicity andcomputational conve-
nience to be a truly useful tool. The main contribution of this paper
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is to provide such an extension in arbitrary dimension, glaith
an intuitive geometric interpretation of its validity.

1.1 Definitions

Given a convex polygon (or polyhedro®) with verticesv;, our
problem is to construct one coordinate functigix] per vertexv;
of P. These functions arbarycentric coordinates with respect to
P if they satisfy three properties. First, the coordinatecfions are
non-negative on P,

bi[x] >0,

for all x e P. Second, the functions formpartition of unity
z bi [X] = 1)
I

for all x. Finally, the functions act as coordinates in that, given a
value ofx, weighting each vertex, by b;[X] returns back.

D Vb =x (1)

This final property is also sometimes referred tdingar precision
since the coordinate functions can reproduce the lineatifumx.

If P is the convex hull ofd + 1 affinely independent points
VgsVp,° -+, Vs P is asimplex. For simplices, these three conditions
are sufficiently restrictive that there exists only one $eéiayycen-
tric coordinate function,[x]. These functions are linear and can
be computed as the ratio of two volumes

Vol [Voa e 1V]’_1axavj+1: e )vd]

L [ X| =
! VoI[vo,---,vjil,vj,vjﬂ,---,vd]

whereVol measures the volume of the simplex defined bydthel
points. Given values; at the vertices; of the simplexP, we can
construct a linear functiori[x] that interpolates these values (i.e.;
satisfiesf [v,] = f;) via the equation

f =7 fi X @

Note that ifP is not a simplex, the three properties do not uniquely
determine the barycentric coordinate functiéxix]. In particular,
many types of barycentric coordinates are now possible. édewy

as long as the barycentric coordinate functions satisfytres fun-
damental properties, the coordinate function can still eduto
form an interpolant as done in equation 2.

Our goal in this paper is to construct a particularly simpte a
elegant set of barycentric coordinates for convex sets uiaegour
search, we argue that in addition to their three defining gntigs,
barycentric coordinate functions should satisfy the fellay four
natural auxiliary properties



Smoothness The coordinate functions should be smooth.ifThis
property ensures that any interpolant build with the coordi
nates is smooth.

Simplicity The coordinate functions should be simple to evaluate.
In our case, we restrict our search to coordinate functibat t
are rational irx.

Tensor product If the polytopeP is the tensor product of two
lower dimensional polytopes, the coordinate functitix]
should be the tensor product of the barycentric coordirfates
these lower dimensional polytopes. For instance, the learyc
tric coordinates for a rectangle should be bilinear coatis,
as widely used in numerical computations on regular grids.

Facerestriction Restricting barycentric coordinates for a polyhe-

barycentric coordinates over an arbitrary convex polytdper co-
ordinates are rational functions of minimum possible degtet
also satisfy the tensor product property and the face ctistni
properties. Due to its simplicity, this construction canebéended
to smooth convex sets using geometric quantities such gernan
planes and Gaussian curvature. To conclude, we demonaisate
ple application of the resulting coordinates in defining fodea-
tion of a smooth convex region.

2 Barycentric coordinates for convex poly-
topes
Given ad-dimensional vectok = (x;,---,%y), we define a convex

regionP as the solution to the matrix inequaliyx < c whereN is
amx d matrix andc is a column vector of lengtin. Without loss of

dron to one of its facets should yield the same coordinates as generality, we assume thisthas minimal size. IPis boundedP is

defining the coordinates directly on the facet. For example,

barycentric coordinates over a square pyramid should be bi-

linear on the square face of the pyramid.

1.2 Previous work

Most of the previous work on barycentric coordinates fosuse
convex polygons in the plane. For the caseagular polygons,
Loop and De Rose [Loop and DeRose 1989], Kuriyama [Kuriyama
1993] and Lodha [Lodha 1993] propose a simple constructian t
satisfy all of the properties above. Their expressionsiyies-
tend the well known area-based formula for barycentric dioates
in a triangle. Unfortunately, none of the proposed consions
have linear precision when applied to irregular polygonsweler,
Loop and DeRose [Loop and DeRose 1989] note in their corarusi
that barycentric coordinates defined over arbitrary copadygons
would open many extensions to their work.

Pinkall and Polthier [Pinkall and Polthier 1993], and lafk
et al. [Eck et al. 1995], present a conformal parametednafibr
triangulated surfaces that actually provides a naturaéresion
of barycentric coordinates to arbitrary polygons. Howgevee
weights they define can be negative even when the polygomis co
vex [Meyer et al. 2002], which can be problematic for intégtion
applications.

Floater [Floater 1997; Floater 1998] gives an algorithmoo-c
struction coordinates over star-shaped regions in 2D. Mewéhis
construction suffers from the drawback that the result divaite
functions are not smooth within the polygon. In recent wddafer
and colleagues [Floater 2002; Floater et al. 2003] alsoeptes
smooth coordinates for non-convex polygons based on the& mea
value theorem. However this family of methods do not satilséy
tensor product property. In particular, mean value coardis are
not bilinear on rectangles. Sibson [Sibson 1981] proposegaal
neighbor interpolant based on Voronoi diagram that yieltsrdi-
nate functions that are non-negative and have linear poecisote
also that Gotsman and colleagues proposed a minimizativerd
barycentric coordinates [Gotsman and Surahhsky 2001]inAte
drawback with these constructions is that the coordinatetfans
are not smooth.

Our construction is the culmination of a line of researchtsta
ing with Wachspress [Wachpress 1975] and Meyer et al. [Meyer
et al. 2002] where rational barycentric coordinate fundifor con-
vex polygons are constructed and continuing through Wd¥hé&m-
ren 1996] where a general, but abstract, construction sngfar
barycentric coordinates over arbitrary polytopes. Wafi®arren
2002] has recently shown that this barycentric constracjields
rational coordinates of minimal degree.

Contributions  Our contribution in this paper is to give a direct,
explicit construction (including pseudo-code for the 3Be&afor

aconvex polytope; in particular, wherd = 2, P is aconvex polygon,
and wherd = 3, P is aconvex polyhedra

Instead of assigning an integer index to each verteR,ofve
instead assign an indeixto each facet oP corresponding to the
equatioanx: g whereNj is the j-th row of N. Now, each vertex
of P is assigned an index set that corresponds to the indices of
those facets oP that containv. Specifically, we indew, by the
maximal set of integere C {1,---,m} such thalN; v, = ¢; for all

jeo.

2.1 The general formula for convex polytopes

A vertexvy is simpleif v, is the intersection ofl half-spaces, i.e;

o exactly containgl indices. A polytopeP is simple if every vertex

of P is simple. Note that convex polygons are always simple while
only a subset of convex polyhedra are simple. For exampia-te
hedra, cubes and triangular prisms are simple while squaee p
mids and octahedra are not. Drawing from Warren [Warren 1996
the barycentric coordinates for simple polytopes havedheviing
form. LetN, correspond to the x d submatrix ofN whose rows
are the vectordl; wherej € 0. We define aveight function Wg[X]

for every vertex, of the form

|Det[No]|

WX = ——— 3

U[ ] no_[x] ( )
whereng[X] is the product of thel linear functionsc; — N;x with
j € g. Note that this weight function depends only on the facets in
cident onvg. In particular, the determinant in the numerator corre-
sponds to the volume of the parallelepiped spanned by theaodt
normal vectorij associated with the facets incident gp, while
the denominator is the product of the distances betweerd thed
facets adjacent ta,.

Finally, the barycentric coordinate functiduy[x] is formed by
dividing each weight functiomw[X] by the sum of all weight func-
tions taken oveP.

At this point, we make several quick observations concernin
the structure of these functiobg[x]. First, these function are non-
negative orP due to the fact that the weight functioms;[x] are,
by construction, non-negative dh Second, these functions triv-
ially sum to one by construction. Third, these functionsehtiwvear
precision. Proving that the functiows[x] have linear precision re-
duces to showing that the associated weight functans| satisfy

the equation
> (Vo —X)Wg[x] =0. 4
Vg EP

The attached appendix proves that the weight functions et fiy
equation 3 satisfy this equation.
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Figure 1: The example trapezoid with bounding halfplanes (|
beled 1-4), normalsN;-N,), and distancesn([x]). The areas of
the shaded parallelograms formed by the normals correspahe
quantity |Det[Ng]|.

Given that the functionb,[x] are non-negative, form a partition
of unity and have linear precision, these functions defirrgdean-
tric coordinates ovelP. Moreover, we also claim that these barycen-
tric coordinates are smooth, reproduce tensor productowes
and satisfy the face restriction property. The key obs@wds to
note that, ifP is polytope withm facets ind dimensionsh;[x] is a
rational function of degrem— d. Thus, these coordinate functions
are smooth and simple to evaluate. As for the remaining twp-pr
erties (tensor product and face restriction), Warren [&fa2002]
shows that there exists only one set of rational barycentidi-
nate functions of degreen— d for a polytope withm facets ind
dimensions. Moreover, this set of coordinate functionsadpces
tensor product coordinates and satisfies the face restrigtiop-
erty. Since the proposed coordinates are barycentric addge
m— d, they must satisfy these two properties.

2.2 Examples

To illustrate the concrete nature of equation 3, we next idens
several examples in various dimensions.
Line segments

In the univariate case, the vectohas the form(x;). We next
construct barycentric coordinate for interyalb]. This interval is
defined as the intersection of two half-intervals satisfyin

-1 —a
(3 )s=(3),
By construction, the corresponding weight functions are
(W [%;], W, %)) = (Xl%a,b_l—xl). Normalizing these weight

functions to sum to one yields the functions for linear iptéation
on the intervala, b,

b—x
bl[xl] = b—;’
X, —a
byx,] = bl—a'

Convex polygons

In the plane, a converrgon can be written as the intersection
of m-halfplanes with each halfplane defining an edge ofrtkgon.
If we index these halfplanes (and edges) of the conweyon in
clockwise order, each vertex of tinegon can be expressed as the

Figure 2: A triangular prism (left) and a square pyramidlft)g

intersection of consecutive edges. For example, congidetrape-
zoid of figure 1 defined by the four halfplanes,

SHIONE)

The trapezoid enclosed by these halfplanes contains the ver
tices {v{l’z},v{273},v{3’4},v{174}}, which correspond to the points

-

{(2,0),(1,1),(0,1),(0,0)}, respectively.
Applying formula 3 yields weight functions/;[X] of the form
1
Wr12) X, %] = X%
1
eyl = e Sy
1
Vel = e —x,)’
1
Wiy 4y (X1, %] X (1=x)"

The corresponding barycentric coordinate functions folly di-
viding each of these weight function by their sums. Noticat th
those coordinates exactly match the ones introduced in¢ietal.
2002] for convex polygons (simple trigonometry shows eguiv
lence).
Convex polyhedra

In 2D, all polygons are simple; that is every vertex is theiisgc-
tion of two edges. In three dimensions, a vertex of a polytredan
lie on more than three faces. For the sake of simplicity, wgrbley
considering barycentric coordinates for a triangularmrign this
case, equation 3 is applicable without modification. Fomgxa,
consider a triangular prism as the intersection of 5 hadfesp as
shown in left part of figure 2.

-1 0 0 0
0 -1 0 X, 0
1 1 0 x | <| 1
0 0 -1 X3 0
1 1 1 2

These half-space intersect in a polyehdron with six simphtices
indexed as

Vi1,24p V(134p V(234p V(1.25) V{135) V(2,35)



with corresponding positions
(0,0,0),(0,1,0),(1,0,0),(0,0,2),(0,1,1),(1,0,1).

Applying formula 3, the corresponding weight functions are

1
W [X )X ’X ] = bl
(1,2,4}1%1 %2, %3 X XpXs
1
Wi s XXXl = S
> X (=X =X)%g
1
WogmlXXoXsl = o
" (1=% = %)%%g
1
Wi o5y X% %] = )
2, XqXo(2 =X — X5 —X3)
1
Wi g5y XX %] = :
3 X (=X =X, )(2—Xg — X5 —X3)
1

w Xps X0y Xa| = .
(23500 %] T % 62 X % %)

The key to generalizing the simple construction to the non-
simple case is to observe the effect of slightly perturbiregentries
of the matrixN. The half-spaces defined by the perturbed marix
define a new simple polytope in which each non-simple vertex h
split into a collection of simple vertices. For example,tpgsing
the half-spaces defining a square pyramid (non-simpledlyialtri-
angular prism (simple). In particular, the vertex of theagupyra-
mid (where four planes meet) splits into two vertices wharee
planes meet. Now, to construct a barycentric coordinatetiom
for non-simple vertex, we simply add the barycentric coordinate
functions for its corresponding simple vertices. Given a-sonple
vertexvg lying onk common faces (where = {1, ...,k}), one suit-
able decomposition fary is into thek — 2 simple vertices{l’LHl}

where 2< j < k- 1. For example, consider the square pyramid de-
fine by the five half-spaces as show on the right of figure 2.

-1 0 0 0
0 -1 0 X, 0
1 1 0 % | <| 1
0 0 -1 X3 0
-1 -1 1 0

This square pyramid has five vertices that are indexed as
VivazsyVinaay Vizaa Visasy Vizas)

with their corresponding positions being
(0,0,0),(0,1,0),(1,0,0),(0,1,1),(1,0,1).

Since the vertex is non-simple, this vertex is decomposed

{1,4,2,5
into the union of two simple vertice§l’2% andv{l7275}.
X + %,
w X, %, %] = 1
{14251 7273 XX (Xq + X — Xg)Xg
1
W g XXX = s
i X (=% = %)X
1
Wioga KXo Xl = moo
o (1=Xp =%))%%g
1
Wiy 351X %0 %] = ;
13, X (=X = %) (Xg + %, — X3)
1

w [X1,%,%] = .
{23571 72273 (1=Xg — X)Xy (X] + Xy — X3)

/I Compute barycentric coordinatesin 3D
sumw + 0
for eachv,; (o is alist of indices to faces ordered clockwise)
/I Assume (without loss of generality) that o = {1..k}
Wg[X] - 0 //initialization
n[X] < (vo —x)-N, // distance fromx to face 1
for j=2..(k—1)
/I Compute volume V of normals Np, Nj, N
Ve \N1'(Nj X Nj+1)|
nj[x] — (Vg —X) - N;
NjpqX < (Vo —%) Ny
Ny iy D3 naX Xy [X]
Wolx] +=V/ny ;.4
sumW+ = wg[x]
/I Normalization of the coordinates
for eachv,
bo[X] = Wo [X]/sumW

/I form denomiator

Figure 3: Barycentric coordinates on 3D polytopes

Of course, this construction seems to depend on the paatipet-
turbation used in decomposing However, as shown in Warren
[Warren 1996], this construction is independent of the ipalar
perturbation chosen. The proof formalizes the perturbasigu-
ment by constructing the projective dual®&nd then triangulating
the facet that is dual to the non-simple verteX he simplices form-
ing the triangulation of this facet are dual to a set of sinyglgices

all coincident withv. The proof then shows that the construction
for barycentric coordinates is independent of any paswictrian-
gulation.

In terms of our previous example, this property means that
using an alternative decomposition m{fl’472’5} into Vi1,45} and
V2,45 yields the same weight function. In particular, the sums
Wit 24y [X] + W1 55 [x] and W1 45) X+ Wio 45} [X] are identical.
This observation allows us to design a simple pseudo-codd-to
ficiently compute barycentric coordinates for 3D convex/pupes,
as given in Figure 3.

3 Barycentric coordinates for smooth con-
vex sets

For a convex polytop®, barycentric coordinates blend valugs
assigned to the vertices &fto define a functionf[x] over all of
P. In some applications, we would like to perform a similartale
ing for arbitrary convex shapes. In particular, given a fiorcf|[t]
defined on the boundary &, dP, we desire a method for extend-
ing f[t] to the interior ofP that generalizes barycentric coordinates
from the polytope case. In this section, we sketch such atiwans
and give more details in the casedf 2.

Given ad-dimensional convex sé® whose boundarngP has
a parameterizatiop[t] (witht € R d-1), a barycentric coordinate

functionb(x,t] (with x € R 9) satisfies the three properties
bjx,t] >0 V¥xeP,
Jypblx,tldt =1 Vx, (5)
Jyp PltIb[X t]dt = x VX,
Each of these three properties generalizes the corresgppddp-

erty for the polytope case. Note that for strictly convex s
(those whose supporting half-spaces contact the shapeingle s



Figure 4: Barycentric interpolation of the functianx, on the unit
circle: notice how the values blend on the interior of theleiin a
smooth, natural manner.

point), the resulting barycentric coordinate functiongefeerate to
the Dirac delta function on the boundaryRjfthat is

blp(t.],t] = J[t —t.] (6)

wherep[t,] is point ondP andd|t] is the Dirac delta function. For
such shapes, the barycentric coordinate function can luetageer-
form boundary interpolation. In particular, given a fuwectif [t] that
is defined ordP, we can compute an extension ffn the interior
of P via the integral

fx) = /d  fltbi . )

Note that due to equation @]x interpolatesf[t] on dP; that is,
Flplt] = ft].

3.1 The general formula for smooth sets

One of the beautiful aspects of formula 3 is that it geneeslito
smooth shapes in a very natural manner. The key observattbati
the Gaussian curvature which is typically a continuous fioncon

a sufficiently smooth convex polyhedra can be viewed as lmxiny
on the faces and edges of the polyhedra and a collection atDir
deltas at the vertices &f. Plugging these deltas in the continuous
integral of equation 7 yields a discrete sum similar to eigna2.
Given a parameterizatiop[t] of dP, we consider the continuous
weight functionw[x, t]

Kltlaft]
(vIt] - (plt] =) )

wherek|t] is Gaussian curvature aft], ajt] is the volume of the
first fundamental form offt] and v[t] is the unit normal top]t].
Note the resulting weight function is independent of theiohof
parameterizatiorp[t] due to inclusion of the factor afi[t]. Next,

wix,t] =

(8)

we compare the numerator and denominator of equation 8 to the

that of formula 3.
In the discrete case, the numeraloet[N,]| corresponds to the
volume of parallelepiped spanned by the unit vecm[swhere

j € 0. If we normalize this expression béf this expression ap-
proximates the area of the patch spanned by the nomd]adm the

Gauss sphere. In the continuous case, DoCarmo [DoCarmg 1976

defines the Gaussian curvatw] to be the limit of the area of
the image of an infinitesimal patalt on the Gaussian sphere di-
vided by the area of the patch. Sincea|t] corresponds to the area
of this patch, the expressiatt]a|t] corresponds to simply the in-
finitesimal area of patch on the Gauss sphere. For the deatonin

ﬁxl,xil

Xz

P

Figure 5: f[xl,xz] provides a map betweqpjt] and f[t]. This map
can be used to perform free-form deformations.
thed discrete normal vectoﬁslj converge to the continuous normal
vectorv|t].

To complete the construction, we define a barycentric coatdi
functionb[x,t] associated withv[x,t] to have the form

b t] = ©

— [HpWix,t]dt’

After this normalization, these coordinate functidofs t] are non-
negative and sum to one.

3.2 A specialized 2D formula

We next consider an explicit construction fofx,t] in the case of
2D convex regions. Given a parameterizatiglt] = (p[t], p,[t])

for the closed convex curvéP, we recall thata[t] (the length
of the first fundamental form) is the length of the tangentt@ec

(Palt], Plt]). i.€;
! U 1
aft] = (pylt* + polt]?)?.
Moreover, the curvaturg|t] has the form

Pt P[t] — polt]pylt]
alt]?

K[t] =

while the unit normalv[t] is the vectorﬁ(—p'z[t], py[t]). After

simplification, the weight functiom[x,t] of equation 8 reduces to
P1lt]Plt] — Polt] Py t] _
((=Polt], Pylt]) - 0 = pat] o = polt]))?

The resulting function fob[x, , X,, ] is non-negative and has unit in-
tegral by construction. Furthermore, the appendix costaiproof
of linear precision that verifies that equation 10 yields si$éunc-
tion bx,,%,,t] that satisfies equation 5.

To illustrate this formula, consider the unit disk whose fidary
is the unit circle with parameterizatiofx;, x,) = (Cog[t], Sin(t]).
By construction, the weight function(x,, X,,t] has the form

WX, Xp,t] = (10)

1
(x,Cosft] +x,Sn[t] — 1)

W[X17X27t] =
The corresponding barycentric coordinate functigry, x,,t] has
the form

_ (1%
 2m(x,Cosft] +X,Sn[t] — 1)2°

b[x;, %5, t]

To construct a functiorf[xl,xz] that interpolates the function
XX, on the unit circle, we must build a functiof{t] parameter-
ized over the boundary that interpolates,. Notice thatf[t] =



Figure 6: Car before deformation and bounding quadratiplBws curve definingplt] (left). Deformed car generated by altering the control

points with bounding curvé|t] (right).

Coslt]Sin[t] since(x;,%,) = (Coslt], Sint]). Now equation 7 can be
computed analytically and has the form
(42 +%2)° .

Figure 4 shows a plot of this function restricted to the unitle.
Observe that the functiofix,, x,] interpolates the functior, x, on
the unit circle while blending these values on the interibthe
circle in a natural manner.

3
2

X1 % <72+ 3% 2+ 3%,2+2(1- %2 —%,2)

fA[Xla X,] =

3.3 An application to freeform deformations

Continuous barycentric coordinates can be used to perform
freeform deformations on images as well. Given a conveoregi
bounded by a smooth curyt], we wish to defornP into another
regionF bounded by the curvé[t] (see figure 5). The deformation

f [X1,X,] is a vector-valued function that smoothly maps points in
P to points inF with the property that points op|t] will map to
points onf]t], that is, f[p[t]] = f[t] and the map will be smooth on
the interior of the regions.

In our example, we definB andF as the regions bounded by
closed quadratic B-splinggt] and f[t] havingk control points on
the periodic interval & t < k. Though B-splines are only piecewise
polynomial, equation 7 still applies. In fact, any B-splm@ve can
be represented as a piecewise polynomial function of thma for

plt] pift —i]
ft] filt—i]’

where p;[t], f;[t] are thei®" polynomial functions comprising the
respective B-splines.

To compute equation 7 we need to constmipt; , X, t], which is
also a piecewise function, and has the form

i<t<i+1

W[Xq, X, 1] = Wi [Xq, X, t =], i<t<i+1

wherew[x;, X,,] is formed using equation 10 for the functigyit].
With this result we can calculate the normalization factoequa-
tion 9 as

k-1 1
WX, X, t]dt = /W-x,x,tdt.
Jop it = 5 [l

Now we computef[xl,xz] using equation 7 as a piecewise inte-
gral that has the form

F[xg, %]

Wm 120 Jo Tilthw[xg, o, t]alt

We can explicitly calculate the integrals above, using alsylin
software package such Bathematica, to obtain a closed form so-
lution in terms of(x;,%,) and the control points of the B-splines
forming p[t] and f[t]. Though eactw;[x;,X,,t] is a rational poly-
nomial function, the resultingf[xl,xz] is more complicated and is
in terms of functions such @& ctan. However, the function is still
fast to evaluate (since no integrals need be computed) arichdge
deformation can be recomputed in realtime.

The user performs image deformation by first placing the con-
trol points of the curvep|t] about the convex area that they wish to
deform (see figure 6, left). Once the user is satisfied, théraon
points are duplicated to form the cur¥ft]. The user then drags on
the control points off [t] to generate the desired deformation. Due
to the fact that barycentric coordinates interpolate thenbary (as
shown in equation 6), the deformed image will follow the bdun
ary of f[t]. Figure 6 (right) shows an example deformation of the
car from the left portion of the figure. The entire applicatand
source for performing these deformations can be downlo&ded
http://www.cs.rice.edu/"sschaefe/barywhite.zip.

4 Conclusion

In this paper we have provided an explicit construction fmylsen-
tric coordinates over polytopes that is valid in arbitraipensions
and contains all of the desirable qualities described iticed.1.
After demonstrating several example constructions andgigirg
pseudo-code for the 3D case, we extended barycentric catesi
to smooth convex functions. Finally, we showed that baryreen
coordinates could be used for image deformation as well.

In future work, we plan on giving a proof of linear precisiar f
the barycentric coordinates for smooth convex sets whaserti
sion is greater than two, and showing how our barycentria-coo
dinates can be extended to non-convex polytopes using ggome
inversion.
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Appendix A

As observed in the paper, proving that the coordinate fansti

bs[X] have linear precision reduces to showing that equation 4

holds; that is the weight functiong[X] satisfy

z (Vg — X)Wg[X] = 0.

Vg EP

To this end, we observe that at a vertgxe P, the following vector
relationship holds

d g

B =1 na—j[

—Ngx
Ng (X

X

whereg is thei-th basis vector ird dimensions. ¢ — j denotes

the seto with index j deleted.) Multiplying the numerator of both

sides of this equation bygl, the resulting equation has the form
Vg —X NG e,

o~ %Ny X

(11

corresponds to the cross product of the 1 rows ofNU_]- divided

by the determinant dfl;. Applying this observation and multiply-
ing both sides of equation 11 et[Ny] yields that

D Cross[N il (12)

(Vo —X)
U j€o Ng_ j

Note that each of the cross products in equation 12 correspora
vector lying parallel to an edge &fincident tov,;. Taking the sum
of both sides of equation 12 over aj} € P yields

Z (Vo —X)

Vs EP

Cross|N,_]

X

Det[Ng] _

ol (13)

Vg€EP j€ET no—j[

Now, we assume (without loss of generality) that the indices
o are ordered such that the determinaniNgfis always positive.
Since each edge &fis shared by two vertices &, the cross prod-
uct on the right-hand side of equation 13 appears twice iddible
summation, once for each possible orientation of the edgeceS
these vector then cancel, the left hand side of equation &is

tically zero. Observing tha%':]”] is exactly the weight function
wq[X] defined by formula 3 completes the proof.

Appendix B

We now prove that the specialized 2D coordinate functipgt]

provided in section 3.2 satisfies the properties that defimgirc-
uous barycentric coordinate functions from equation 5. fiitsg,

two properties (non-negativity and unit integral) are fred by con-
struction ofb[x,t]. Therefore, we must show thhfx,t] has linear
precision, which is stated as

x= A _ Pllbp,tict

Substituting the definition df[x,t] from equation 9 yields

X /0 i ot = A _ Plthwix,tle

Rewriting this equation as a single integral, we obtain

/dP(X_ plt])wix,t]dt = O

Substitution of the definition of[x,t] from equation 10 creates the
specialized two-dimensional equation

/ (X4 = Pylt] X — Po[tD (Pt Palt] — Polt]P[t)) _
oP (( pz[t] pl[]) (% = Paftl X, = p,[t]))?
Integrating the indefinite integral yields the function
(Palt] pz[])
(=P,lt], Py [t]) - (xy = py[t], X, —

Since the integral is evaluated over a closed path, the tiefimi
tegral is zero. Therefore, the specialized 2D coordinatetfan
b[x,t] satisfies equation 5.

Polt])



