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Abstract

In this paper we present a subdivision scheme for mixed -trian
gle/quad meshes that@ everywhere except for isolated, extraor-
dinary points where the surfaceG$. The rules that we describe are
the same as Stam/Loop’s scheme except that we perform go-unzi
pering pass prior to subdivision. This simple modificatimmpioves

the smoothness along the ordinary triangle/quad boundeny@?!
toC2 and creates a scheme capable of subdividing arbitrary rmeshe
Finally, we end with a proof based on Levin/Levin’s joint spel
radius calculation to show our scheme is ind€8dlong the trian-
gle/quad boundary.

1 Introduction

Subdivision has become a staple of the geometric modeling co
munity allowing coarse, polygonal shapes to representigh
fined, smooth shapes with guaranteed continuity propertrs-
viously, there has been a dichotomy between polygonal tiviesi
that subdivision schemes operate on. Two of the most popular
division schemes, Loop [Loop 1987] and Catmull-Clark [Calim
and Clark 1978], operate on triangle and quad meshes résggct

1.1 Stam/Loop’s Scheme

Recently, Stam and Loop [Stam and Loop 2003] introduced a gen
eralization of Loop and Catmull-Clark subdivision thatfigs these
schemes together and operates on mixed triangle/quadcesirfa
The subdivision scheme that they present reproduces Ldmjivéu
sion on the triangular portions of the mesh and Catmull4Csaib-
division on the quadrilateral polygons. Furthermore, tlithars de-
rive subdivision rules for extraordinary vertices commgbsé both
quads and triangles where the subdivision scherfd.is

Figure 1: Linear subdivision for triangle/quad meshes. Adli-0
nary triangle/quad configuration is introduced all along llound-
ary edge.

Stam/Loop created their generalization of triangle andicgudo-
division by utilizing the fact that both Loop and Catmullaeh sub-
division can be written as linear subdivision followed byeg-
ing [Zorin and Schroder 2001; Stam 2001; Warren and Weimer
2001]. For triangle/quad meshes, linear subdivision sgliangles
into four new triangles and quads into four new quads. Thisgss
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introduces what Stam/Loop called an ordinary edge alontyidue-
gle/quad boundary where vertices are contained by two adjac
quads and three adjacent triangles (see figure 1).
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Figure 2: Averaging masks for Catmull-Clark (left), Loopi¢iuie)
and Triangle/Quad (right).

Once linear subdivision is complete, an averaging pass-is ap
plied to the mesh. Figure 2 shows the averaging mask for the or
dinary case of Catmull-Clark and Loop subdivision. Stanofbo
noticed that the averaging masks for triangle and quad siabdi
sion looked remarkably similar and hypothesized that treraay
ing mask for mixed triangle/quad surfaces at the ordinagndary
would simply be the mask shown on the right of figure 2. The au-
thors then used this observation to generalize the avayagask to
arbitrary configurations of quads and triangles around texefFi-
nally, Stam/Loop show that their schemeds everywhere except
for extraordinary points and the ordinary triangle/quadirimtary
where their scheme 8.
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Figure 3: Levin/Levin’s rules for the central edge (left aniidle).
Unzippering rule for triangular side (right).

1.2 Levin/Levin’s Scheme

To remedy this smoothness problem along ordinary triaqgbed
edges, Levin and Levin [Levin and Levin 2003] introduced & se
of modified rules along the triangle/quad boundary showngn fi
ure 3. The authors also present the concept of an "unzipgerin
mask shown in figure 3 (right). Prior to subdivision, poinksna
the regular triangle/quad boundary are replicated; onefseer-
tices for the quadrilateral polygons and another for thentgular
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Figure 4: Subdivision for triangle/quad meshes as centawit-
aging. Centroids of each type of polygon weighted by the engl
spanned in the ordinary configuration (left). Averagingerat ordi-
nary boundary formed from centroids (right).

polygons. This replication essentially "unzippers” thesmento
disjoint pieces consisting of only triangles or only quatise repli-
cated vertices for the quadrilateral polygons retain tleiginal
positions; however, the vertices along the boundary forttiae-
gular polygons have the mask in figure 3 (right) applied tarthe
When subdivision is performed, the new vertices on the qlaadr
eral portions of the mesh use only the quadrilateral vestighile
new vertices on the triangular portions of the mesh use oidp-t
gular vertices. The vertices actually on the triangle/dgoagdndary
use only the original vertices of the mesh.

Levin/Levin then prove that these modified rules generaiga s
face that isC2 across the triangle/quad boundary. As part of their
proof, the authors present a sufficient test@8rsmoothness based
on a joint spectral radius calculation between two subidimisna-
trices and show that their modifications genera@?subdivision
scheme. However, this subdivision scheme can be difficldipto
ply in practice due to the special rules introduced alongttiae-
gle/quad boundary, which also have larger support thaGthrales
and do not readily fit into the averaging subdivision framewo
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Figure 5: Unzippering mask for the vertices part of the trian
gle/quad boundaryn is the number of edges incident to the vertex
that are part of the network of triangle/quad boundary edges

2 The Unified Subdivision Scheme

Our implementation of triangle/quad subdivision uses #mtroid
averaging approach described by Warren and Schaefer [k\ance
Schaefer 2003]. In that method the authors derive subdivisiles
for arbitrary configurations of triangles and quads as a ktei
average of centroids of polygons. For instance, figure 4tilaies

Figure 6: Initial shape (upper left). Unzippered shape énpight).
Linear subdivision (bottom left). Averaging pass zippeesimback
together (bottom right).

the centroids and relative weightings of those centroids gener-
ate the averaging mask of Stam/Loop for the ordinary triafogiad
boundary.

Like Levin/Levin, we utilize an unzippering mask during slit
vision. However, our unzippering mask differs from Leviailin’s
choice and is shown in figure 5. We have also extended our unzip
pering masks to arbitrary configurations of edges part ofrihe-
gle/quad boundary, which allows us to subdivide a greatéetya
of surfaces.

Prior to subdivision, we identify edges on the surface doeth
by both triangles and quads. These edges define a networkvefcu
on the surface. Then we apply the unzippering makkdJg) to
this curve network to generate separate triangle and quaides
along the triangle/quad boundary (we also designate esrtion-
tained completely by triangles or completely by quads taibagle
and quad vertices respectively). Next, we apply linear sigidn
and averaging to the resulting points. Our only modificatiaat we
make to Warren and Schaefer’s scheme is that we requiredbht e
centroid is calculated using vertices only of the same typéhae
polygon; that is, triangle centroids are calculated usinly trian-
gle vertices and, similarly, quad centroids are calculatgdg only
quad vertices. This small modification generates surfduaisare
C2 across the ordinary triangle/quad boundary, which we piove
section 3. Furthermore, these changes also extend thevisidali
scheme to arbitrary surfaces such as non-manifold surfaces

The entire subdivision process is depicted in figure 6. Btart
with an initial shape, we first unzipper the surface into aligj
pieces consisting of entirely triangles or entirely quagisapply-
ing the masks in figure 5. Next, we perform linear subdivision
the separate pieces. Finally, we close the surface backhergey
performing averaging, which completes one round of subitiai
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Figure 7: Coefficients of the Box spline reproducixig(left), xy (middle) andy? (right).

triangular side are highlighted.

3 Analysis

3.1 Necessary Conditions

Given an ordinary triangle/quad boundary (shown in figureve)

define S to be the subdivision matrix for Stam/Loop’s scheme

formed by centroid averaging. For the subdivision schemketo
C2 in the functional sens& must satisfy

S = Az @
11 11

whereA, =1, 5, 3, %1, 7,7 andz are the corresponding eigenvectors
producing the polynomials, &,y,x2,xy,y? [Warren and Weimer
2001]. WhileS satisfies equation 1 fdr=1...5, Sdoes not for
Z; (corresponding tg?). Figure 7 shows the coefficients of the

vertices that reproduce the quadratic polynomidjsy andy? over
the triangular and quadrilateral portions of the mesh. dédathat the
coefficients fory? do not agree at the boundary Soannot possibly
beC? at the boundary. . .
Our goal is to construct a new subdivision sche®seich thatS
satisfies equation 1 for=1...5 and thalv = vwherevis a new

eigenvector corresponding ¥8. To analyze the case gf further,
let v; be the coefficients that reproduszé on the triangle vertices
and the boundary, but zero on the quadrilateral verticasil&iy,
letvg be the coefficients reproduciyg on the quadrilateral vertices
and the boundary, but zero on the triangle vertices. We define
new eigenvectov to be of the form

Vi triangle vertices
avi+(1—a)vg boundary
Vg quad vertices

V=

)

We now construct unzippering matriddgandUq such that
V; triangle vertices and boundary

by = { 0 quad vertices
Uy = { \EJ triangle vertices
q

boundary and quad vertices
Using equation 2 we solve for the unzippering matrices as

1 triangle vertices
U = (g, 1ka La) boundary
0 quad vertices
0 triangle vertices
_ —_a 12 _
Ug = (24> f;aa ) bOUndary
1 guad vertices
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Figure 8: Mask calculated through centroid averaging o sae
of the triangle/quad boundary. The mask is exactly half efrég-
ular mask for triangular or quadrilateral surfaces.

Notice that Levin/Levin’s choice of the unzippering maskree
sponds taa = 0. Levin/Levin's special boundary rules were then
chosen to satisfy equation 1 for that particular choice of

With these definitions we now partitidhinto the formS=§ +
S where§ andS; are formed by centroid averaging on the triangle
and quad portions of the mesh respectivglyandS; then satisfy

iy, triangle vertices
S = gvt boundary

0 quad vertices

0 triangle vertices
SVvqg = %Vq boundary

7V¥q  quad vertices
Notice that, on the boundar§, andS; producegv, and §vq respec-
tively because the subdivision matrices contain half-ragskown
in figure 8) formed from centroid averaging.

Our subdivision schem8is then represented as

S=SU; + U
Applying Sto v yields
S = SUV+ SUqv
= SVt + Vg
vt triangle vertices
= W+ 8V boundary
aVq quad vertices

The final piecewise definition corresponds to exac%ty Since
U; andUq do not modify the boundary for the eigenvectardor



i=1...5andS = lv, Ssatisfies the necessary conditions @r
continuity at the boundary.

3.2 Sufficient Conditions

To analyze the smoothness of the subdivision scheme that we

present, we use a sufficient test described by Levin/Levaviji
and Levin 2003]. This smoothness test requires that the\galmh
scheme i€2 away from the boundary edge and that the subdivision
matrix for a point on the boundary satisfies the necessanitions
from section 3.1. Furthermore, the subdivision schemegatbe
edge must satisfy a joint spectral radius condition.

To perform the joint spectral radius test, we require twodsub
vision matrices A andB) that map an edgk on the boundary to
two smaller edges.( andL,) after one round of subdivision. The
matricesA and B should contain all of the vertices that influence
the surface over the edgeg andL,. Next, we find a diagonalizing
matrixW such that

N Cy )
0 Yy

6 C
0y,

whereA is a diagonal matrix with the entries 4, 3, 1,7, 7 and
is an upper-triangular matrix with the same diagonal estag/\.
Finally, we useY, andY; to compute

e ( ®3)
w-iBwW = (

1
P (Y, ;) = (Max||Ye, Y, .Y [lo) ¥ Whereg; € {0,1}.

According to Levin/Levin, if there existslesuch thap[{ < 1, then

the subdivision scheme @&? at the boundary.

The obvious choice for constructing the matvikis to simply
use all of the eigenvectors 8f However, this approach can be nu-
merically unstable if the matrix has small eigenvalues.ihevin
suggest thawv be formed from the right eigenvectors associated
with the eigenvalues from\ and a basis of the null space from
the corresponding left eigenvectors. Since symbolic matkages
such adMathematica can generate the eigenvectors corresponding
to A exactly, this method yields a numerically stable method for
creatingWw.

While Levin/Levin's approach leads to a mati¥ satisfying
equation 3, we found that the rate of convergence in the dect
radius calculation was slow for our subdivision scheme telnd,
we form a diagonalizing matri®/ using the right eigenvectors cor-
responding to the eigenvalues/Anand the null space of those vec-
tors. In our experience, we found that the mathixcreated in this
fashion yields a matrix satisfying equation 3 and generfaster
convergence in the joint spectral radius calculation.

When applying the spectral radius technique to our sulidivis
scheme, we calculatgal!” = 0.172878. Since*” < 1 and our
scheme satisfies the necessary conditions for polynomizrge
tion, we conclude that our subdivision schem@3sat triangle/quad
boundaries. Figure 9 shows a curvature plot of a highly sidbeld
model from figure 6. Notice the color discontinuity at theatri
gle/quad boundary in Stam/Loop’s scheme where as our madific
tion generates continuous curvature at the boundary.

4 Conclusion
We have presented a subdivision scheme for mixed triangie/q

surfaces that i€2 everywhere except for isolated, extraordinary
vertices where the schemeG4. The subdivision scheme itself is

Figure 9: Curvature plots of the finely subdivided shape from
figure 6 for Stam/Loop’s scheme (bottom left) and our modified
scheme (bottom right).

the same as Stam/Loop’s triangle/quad scheme except thagmwe
form an unzippering pass before subdivision. Our choicehef t
unzippering mask does not yield special rules in the impteme
tation and lends itself to real-world applications as thehoe is
very easy to code. Furthermore, our subdivision schemeigesv
rules for handling arbitrary triangle/quad surfaces idaig non-
manifold surfaces. Finally, we applied Levin/Levin's saiffincy
test forC2 smoothness to prove our modification to the subdivision
producesC? surfaces at the triangle/quad boundary.
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