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Smooth Subdivision for Mixed Volumetric Meshes

Jan Philipp Hakenberg

Abstract

We derive stationary subdivision rules on bi-uniform volumetric grids consisting of

pairwise combinations of tetrahedra, octahedra, triangular prisms and cubes. We

refine the existing framework of quasi-interpolants so that weight stencils are obtained

by algebraic manipulation. The joint spectral radius test proves that our combined

schemes yield C2 limit functions.

Furthermore, we present an algorithm to subdivide an unstructured mesh con-

sisting of the basic shapes enumerated above. The subdivision rules are generalized,

such that smoothness is preserved across all faces and the effort of implementing the

scheme remains low.
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Chapter 1

Introduction

Subdivision is a technique in computer aided geometric design for approximating a

smooth surface by a sequence of increasingly faceted polyhedra. Subdivision schemes

have several attributes that have motivated their development ever since the funda-

mental work of [CC78], [DS78] and [Lo87]: The input that a designer or artist provides

to the algorithm, usually a coarse mesh, is manageable in size and the subdivision

iteration on the mesh, determined by a simple set of affine combinations, typically

results in a smooth surface. Today subdivision algorithms find their main application

in industrial design and computer animations, for instance in modelling the skin of a

humanoid character.

While a huge variety of subdivision algorithms exist to conveniently generate

smooth surfaces, less attention has been given to volumetric subdivision schemes. In

this thesis we derive stationary subdivision rules on bi-uniform volumetric meshes

consisting of pairwise combinations of tetrahedra, octahedra, triangular prisms and

cubes. We refine the existing framework of quasi-interpolants so that weight stencils

can be computed by algebraic manipulation. The joint spectral radius test developed

in [L203] proves that our combined schemes yield C2 limit functions.

In the final chapter, the rules are generalized to almost arbitrary mesh configu-

rations; nevertheless the effort of implementing the scheme remains low. In analogy

to subdivision schemes for surfaces in 3D, the input to our volumetric subdivision

algorithm is an unstructured mesh consisting of the basic shapes enumerated above.

In one round of subdivision each shape is split into multiple smaller basic shapes,

such that the result is again a 3D mesh. Several iterations of this process result in a
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Figure 1.1 : Three rounds of subdivision of a surface mesh. Below, volumetric subdi-
vision of a mesh consisting initially of 3 tetrahedra, 1 octahedron, 3 triangular prisms
and 1 cube.

fine partitioning of space as illustrated in figure 1.1. For our generalized subdivision

scheme we can guarantee smoothness everywhere except at extraordinary edges and

vertices.

Our approach is motivated by the work on combined triangular-quad schemes in

[L203] and [SW03]. Both papers discuss subdivision schemes that process meshes

containing triangles and quads, which offers great freedom in surface modeling. For-

merly, smooth subdivision algorithms were restricted to meshes consisting of either

one of the polygon types. Our volumetric scheme is very similar in nature because

we aim to develop a subdivision algorithm on mixed volumetric meshes containing

tetrahedra, octahedra, triangular prisms and cubes. The theory for deriving the sub-

division rules builds on the paper on polynomial generation and quasi-interpolation

in stationary non-uniform subdivision [Le03].

Previous work on volumetric subdivision includes [BS02], which introduced subdi-

vision rules for hexahedral meshes in the framework of factored subdivision. Averag-

ing rules from 1- and 2-dimensions are generalized to higher dimensional hexahedral

grids, including volume grids built out of cubes. The paper on smooth subdivi-
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sion of tetrahedral meshes [SW04] explains how subdivision is performed on meshes

consisting of tetrahedra and octahedra. We revisit and translate the scheme into a

quasi-interpolant formulation.

The rules of the two afore mentioned volumetric subdivision schemes are preferable

because the symmetry of the uniform grid is precisely reflected in the weights. In fact

subdivision by our more general scheme does not differ from [BS02] when restricted to

cubes, and does not differ from [SW04] when restricted to tetrahedra and octahedra.

Several other subdivision schemes on unstructured volume elements have been

proposed in the past. [CJ96] presents a technique to subdivide 3D lattices of arbi-

trary topology, originally motivated by freeform deformation. However, the authors

provide no smoothness analysis. Another subdivision method for tetrahedral meshes

is proposed in [CD02]. The subdivision rules are related to box splines. Initially,

diagonals are assigned to each tetrahedra, so that the split of each tetrahedron into

8 smaller tetrahedra is well determined. Distinct initial assignments lead to different

subdivision outcomes. Again, no smoothness analysis is provided.

Volumetric subdivision has several applications. [CJ96] and [SW04] describe

among others, how to deform a geometric model by embedding it into a coarse vol-

umetric mesh, which is then subdivided and which controls the deformation. The

principle is depicted in figure 1.2. The smoothness of the volumetric subdivision al-

gorithm ensures that deformation happens gradually and does not produce creases on

the surface of the model. In section 5.5 we illustrate how the variety of shapes that

we provide helps to encapsulate the model in a manner reasonable for the desired

deformations.

The fine partitioning of space generated by a volume mesh after a few rounds of

volumetric subdivision can be used to build context related databases. In contrast to

uniform or adaptive rectified space partitioning, the meshes considered by our new

subdivision algorithm can be brought into almost exact alignment with boundary

creases or other features of a volumetric region of interest. An example application is
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Figure 1.2 : a) shows wireframe of a spoon model, shaded in b). c) displays an
embedding of the spoon in a volumetric control mesh. Barycentric coordinates of the
vertices of the spoon are determined with respect to the shapes of the subdivided
volume mesh in d). Modifying the vertices of the volumetric control mesh results in
a deformation of the spoon.

the gene-expression database for the mouse brain viewable on www.geneatlas.org.

A coarse volumetric mesh is defined so that several rounds of subdivision deliver a

mesh almost perfectly aligned to the features and areas of the brain, and each tiny

volumetric cell belongs entirely to one functional brain region. Since each cell is

assigned information about local gene-expression, it is important that no two contex-

tural distinct brain areas contribute to the same cell.

This thesis is structured in the following way: Chapters 2 and 3 discuss selected

subdivision algorithms with emphasis on quasi-interpolant formulations. Chapter 4

contains the major theoretical contribution of this thesis, in that we derive how to

combine two subdivision schemes along a common boundary into a smooth bi-uniform

scheme. Also, we perform the relevant combinations that are of importance for our

general algorithm. In Chapter 5, we present the volumetric subdivision algorithm

on unstructured mixed meshes. The chapter is designed for a broad audience and

knowledge from previous sections is not mandatory.
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Chapter 2

Background

This chapter introduces notation, the reader might be unfamiliar with or which might

appear ambiguous. We give the formal definition of uniform subdivision schemes.

Since the framework of quasi-interpolants is particularly useful for combining two

uniform stationary subdivision schemes along a common boundary, we also discuss

the content of [Le03]. As examples, we visit the famous univariate cubic B-spline sub-

division scheme, as well as the box-spline subdivision scheme on a regular triangular

mesh.

2.1 Notation

Let m ∈ N, j = (j1, j2, ..., js) ∈ Zs, k ∈ Zs and x, y ∈ Rs. Then in multi-index

notation

|j| = |j1|+ |j2|+ ... + |js|
j ≥ 0 ⇐⇒ j1, j2, ..., js ≥ 0

j ≡m k ⇐⇒ ji ≡ ki mod m ∀i ∈ {1, ..., s}
xj = xj1

1 xj2
2 ...xjs

s .

For j ≥ 0 we define j! = j1!j2! · ... · js! and Dj = ∂|j|
∂j1x1∂j2x2...∂jsxs

.

Let λ ∈ R and A ∈ Rs×s. For arithmetic operations on subsets of Rs ⊃ X we

define

X + y = {x + y | x ∈ X}
λX = {λx | x ∈ X}
AX = {Ax | x ∈ X} .

A subset X ⊂ Rs is called symmetric if x ∈ X =⇒ −x ∈ X.
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Let Cm(Rs) denote the space of all m-times differentiable functions from Rs to R

whose m-th order derivatives are continuous.

∇ = (
∂

∂x1

,
∂

∂x2

, ...,
∂

∂xs

) and ∆ =
∂2

∂2x1

+
∂2

∂2x2

+ ... +
∂2

∂2xs

.

The function space of polynomials with degree ≤ m over the domain X ⊂ Rs is

πm(X) = span {f | f : X −→ R, f(x) = xi, 0 ≤ |i| ≤ m}. For the identity operator

Id : X ⊂ Rs −→ Rs we have Id(x) = x.

For a countable set X we denote the function space l(X) = {f | f : X −→ R}.
Whenever we write f |Y for f ∈ l(X) and a finite subset Y = {y1, ..., yn} ⊂ X we may

use f |Y as a column vector with f(yi) as the i-th entry. Whenever we write f |X for

a function f : Rs −→ R and a countable, infinite set X ⊂ Rs, then f |X is treated as

an element of l(X).

Furthermore, we use the sets

Z+ = {1, 2, ...} Z+
0 = {0, 1, 2, ...}

Z− = {−1,−2, ...} Z−0 = {0,−1,−2, ...} .

2.2 Uniform subdivision

A uniform subdivision operator is a linear operator S : l(Zs) −→ l(Zs) defined by a

finitely supported mask a ∈ l(Zs) through

S(P )(α) =
∑

β∈Zs

a(α− 2β)P (β).

For an arbitrary initial set of control points P0 ∈ l(Zs) a stationary subdivision

scheme is defined by the iteration

Pn = SPn−1 = SnP0 ∀n ∈ Z+,

i.e. the operator S is invariant in the course of the iteration. The scheme S is called

uniformly convergent, if for all P0 ∈ l(Zs), there is a continuous function F :Rs −→ R
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with

lim
n→∞

max
z∈Zs∩2nX

|SnP0(z)− F (2−nz)| = 0,

for any open and bounded domain X ⊂ Rs. In this case, we denote by S∞P0 = F the

limit function of P0 generated by subdivision. As part of the definition of uniform

convergence we require that S∞P0 is non-zero for some P0.

For a uniformly convergent scheme S, the notion of a basis function Φ: Rs −→ R

is captured by the definition

Φ = S∞δ where δ ∈ l(Zs) is δ(z) =





1 z = 0

0 otherwise
.

Then S∞P0 =
∑

α∈Zs P0(α)Φ(· − α), and Φ satisfies the 2-scale relation

Φ(·) =
∑

α∈Zs

a(α)Φ(2 · −α). (2.2.1)

A scheme belongs to the class Cm, if the basis function Φ ∈ Cm(Rs).

Every mask a can be aligned at the origin so that ξ ∈ Z+
0 is minimal in

a(α) = 0 ∀α ∈ Zs \ [−ξ, ξ]s.

Then, Ω = [−ξ, ξ]s is called the support of S.

The weight stencil at λ̄ ∈ Zs is defined as wλ̄ ∈ l(Zs) with wλ̄(β) = a(λ̄ − 2β).

For a particular scheme there are essentially only 2s different weight stencils up to

translation. They can be considered representatives of the equivalence relation

wλ̄1
∼ wλ̄2

⇐⇒ λ̄1 ≡2 λ̄2.

A weight stencil wλ̄ is supported in the one-ring, if wλ̄(β) = 0 for all β ∈ Zs ∩
([−1, 1]s − λ̄

2
).

2.3 Quasi-Interpolants

[Le03] shows that every stationary uniformly convergent subdivision scheme satisfies

S∞(f |Zs) =
∑

|i|≤m

mi

i!
Dif ∀f ∈ πm(Rs), (2.3.1)
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in which the moments mi are given by

mi =
∑

β∈Zs

Φ(−β)βi. (2.3.2)

When restricted to polynomial input, equation 2.3.1 expresses the operator S∞ :

πm(Zs) −→ πm(Rs) as a linear combination of differential operators. The operator

Q : πm(Rs) −→ πm(Zs) that satisfies S∞Q = Id is called the quasi-interpolant of the

scheme S.

The operator Q : πm(Rs) −→ l(X) for a countable unbounded set X ⊂ Rs is said

to preserve leading coefficients, if

f ∈ πk =⇒ |Qf(x)− f(x)| = o(||x||k), as ||x|| −→ ∞, x ∈ X.

for all k ≤ m. For functions f : Rs −→ Rs the dilation operater σ acts as σ(f) = f( ·
2
).

In this context [Le03] proves the following

Corollary 2.1. If S is convergent, S∞ is injective, and Q : πm(Rs) −→ l(X) preserves

leading coefficients, then

S∞Q = Id ⇐⇒ SQ = Qσ, (2.3.3)

both identities restricted to πm(Rs).

In the case where S is unknown but the quasi-interpolant Q is fixed to a linear

combination of derivatives that preserves leading coefficients over X = Zs, from

the rhs in equivalence 2.3.3 we establish 2s systems of linear equations, of which

the solutions correspond to the weight stencil representatives in the mask a that

determines S.

To solve for a single stencil wλ̄ ∈ l(Zs) at λ̄ ∈ Zs, we fix a finite support Λ =

{λ1, λ2, ..., λn} ⊂ Zs, where wλ̄ is assumed to be zero outside of Λ. wλ̄ as a |Λ|-column

vector is a solution of

MQ(Λ)wλ̄ = bQ(λ̄) (2.3.4)
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where MQ(Λ) denotes a
(

m+s
s

)× |Λ| matrix and b a
(

m+s
s

)
-column vector with entries

mij = Q(xi)(λj) and bi = Q(
xi

2−|i|
)(λ̄)

with the multi-index i ≥ 0, 0 ≤ |i| ≤ m and j ∈ {1, ..., |Λ|}. A solution satisfying

2.3.4 might not exist, in which case the quasi-interpolant Q and/or the stencil support

Λ has to be altered.

Example 2.1. For the univariate cubic B-spline subdivision scheme the operator

S : l(Z) −→ l(Z) is defined by the mask

a|[−2,2] =
1

2

1

2
[1 2 1] ∗ 1

2
[1 2 1] =

1

8
[1 4 6 4 1], (2.3.5)

and a is zero outside of the support Ω = [−2, 2]. The scheme converges uniformly. The

basis function Φ ∈ C2(R) is a piecewise cubic polynomial. Repeated application of

the operator S to the control point sequence P0 interpreted on the narrowing diadic

grid 2−nZ in the limit resembles the function S∞P0. Two essential weight stencil

representants are

w0|[−1,1] =
1

8
[1 6 1] and w1|[0,1] =

1

8
[4 4].

Let xi : R −→ R be the monomial of degree i over R. For the choice of P0 = xi|Z
as the sampling of the monomial over the integers, it can be shown that

S∞(x0|Z) ≡ 1

S∞(x1|Z) = x

S∞(x2|Z) = x2 + 1
3

S∞(x3|Z) = x3 + x

(2.3.6)

The term S∞(x4|Z) cannot be expressed as a linear combination of finitely many

monomials over R. Therefore we say that the scheme reproduces polynomials up to

degree three. In [Le03] the four equations in 2.3.6 are combined into S∞ : π3(Z) −→
π3(R) as

S∞(f |Z) = f +
1

6
∆f ∀f ∈ π3(R).
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Due to the linearity of S∞, we understand that

S∞(1|Z) = x0

S∞(x|Z) = x1

S∞((x2 − 1
3
)|Z) = x2

S∞((x3 − x)|Z) = x3,

i.e. in order to generate a monomial xi up to degree 3 as the result of B-spline

subdivision, the quasi-interpolant Q : π3(R) −→ π3(Z) with

Q(f) = (f − 1

6
∆f)|Z ∀f ∈ π3(R) (2.3.7)

maps xi to the appropriate initial control points. Suppose a is unknown. Choose Q

as in eq. 2.3.7. Then the weight stencil w0 with support Λ = {−1, 0, 1}

MQ(Λ)w0|Λ =




1 1 1

−1 0 1

2
3

−1
3

2
3

0 0 0




w0|Λ =




1

0

− 1
12

0




= bQ(0)

has the unique solution w0|Λ = 1
8
[1 6 1] and 0 outside of Λ. The computation is

analogous for the remaining stencil w1 with support Λ′ = {0, 1} by solving

MQ(Λ′)w1|Λ′ =




1 1

0 1

−1
3

2
3

0 0




w1|Λ′ =




1

1
2

1
6

0




= bQ(1)

with the unique solution w1|Λ′ = 1
8
[4 4]. Both stencils, w0 and w1, are supported in

the one-ring.

Example 2.2. As another example we consider the box-spline subdivision scheme

on a regular triangular mesh, whose generalization is the well-known Loop scheme.
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Figure 2.1 : Each row except c) represents three rounds of subdivision for the initial
control point sequence P0 = δ, displayed over the non-zero part. The values are
connected by lines to emphasize shape. a) shows subdivision via the mask 1

2
[1 2 1].

b) depicts δ, Sδ, S2δ and S3δ where S is from the cubic B-spline example 2.1, also
in c) but with P0 = x2|Z converging to F = x2 + 1

3
. d) represents an approximation

to S∞δ = Φ the basis function of the scheme in example 2.2.
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The subdivision operator is defined by the mask

a|[−2,2]2 =
1
22

1
2




0 1 1

1 2 1

1 1 0


 ∗

1
2




0 1 1

1 2 1

1 1 0


 =

1
16




0 0 1 2 1

0 2 6 6 2

1 6 10 6 1

2 6 6 2 0

1 2 1 0 0




. (2.3.8)

[Le03] shows that the underlying operator S∞ : π3(Z2) −→ π3(R2) is of the form

S∞(f |Z2) = f +
1

6
∇


 1 1/2

1/2 1


∇T f

and the quasi-interpolant Q : π3(R2) −→ π3(Z2) is

Q(f) = f |Z2 − 1

6
(∇


 1 1/2

1/2 1


∇T f)|Z2 ,

The above representation for S∞ is obtained by substituting the non-zero evaluations

of the corresponding basis function Φ: R2 −→ R at integer points, namely Φ(0, 0) = 1
2

and

Φ(1, 0) = Φ(0, 1) = Φ(1, 1) = Φ(−1, 0) = Φ(0,−1) = Φ(−1,−1) =
1

12
,

into expression 2.3.2 to yield the moments in equation 2.3.1 up to order 3 as

m(0,0) = 1, m(2,0) = m(0,2) =
1

3
, m(1,1) =

1

6

while mi = 0 for i ∈ Z2 with i ≥ 0 and |i| ∈ {1, 3}.

2.4 Discrete convolution

Let the operator VA,ν : l(AZs) −→ l(AZs) be defined by a finitely supported mask

ν ∈ l(AZs) and an invertible matrix A ∈ Rs×s through

VA,ν(P )(α) =
∑

β∈AZs

ν(α− β)P (β) ∀α ∈ AZs.
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Then VA,ν is called a discrete convolution operator on AZs. On the particular grid

Zs the convolution operator is commonly abbreviated to VI,ν(P ) = ν ∗ P as in the

equations 2.3.5 and 2.3.8.

We say for finite subsets of the grid X,Y ⊂ AZs X computes ν on Y , if there is

a matrix U ∈ R|Y |×|X| such that

U(P |X) = VA,ν(P )|Y ∀P ∈ l(AZs). (2.4.1)

Finite differences are examples of discrete convolution operators. They approxi-

mate derivatives of a function sampled over a uniform grid. We present several masks

ν of such operators according to our needs and without derivation. All operators are

exact for polynomials of degree ≤ 3. The symbolic equation

∂xx=̌ν|[−1,1] = [1 − 2 1] (2.4.2)

abbreviates f ′′(z) = 1f(z−1)−2f(z)+1f(z+1) ∀z ∈ 1Z for all univariate polynomials

f up to degree 3 and ν is zero on the remaining domain Z \ [−1, 1]. The discretized

Laplace operator in the bivariate setting on the grid Z2 is expressed by the mask

∆ = ∂xx + ∂yy=̌ν|[−1,1]2 =




0 1 0

1 −4 1

0 1 0


 . (2.4.3)

Also on the grid Z2 the mixed partial of second order is discretized by

∂xy=̌ν|[−1,1]2 =




ζ−1
4

−ζ
2

ζ+1
4

−ζ
2

ζ −ζ
2

ζ+1
4

−ζ
2

ζ−1
4


 ∀ζ ∈ R. (2.4.4)

Not so common is the approximation of the derivatives of a function sampled over

the grid AZ2, where A = [e1|ρ] with e1 = (1, 0)T and ρ = (−1
2
,
√

3
2

)T ∈ R2. This grid

is the natural choice for a parametrization over a triangular mesh and in this thesis

we will make use of the following relations:

(∂xx+∂yy)f=̌−4f(·)+2

3
[f(·+e1)+f(·+ρ+e1)+f(·+ρ)+f(·−e1)+f(·−ρ−e1)+f(·−ρ)]

(2.4.5)
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which is the sum of the separate masks

∂xx=̌ν|Θ =




0 0

1 −2 1

0 0


 and ∂yy=̌ν|Θ =




2
3

2
3

−1
3
−2 −1

3

2
3

2
3




where Θ = {(0, 0), e1, e1 + ρ, ρ,−e1,−e1 − ρ,−ρ}. The mixed partial of second order

is discretized to

∂xy=̌ν|Θ =




− 1√
3

1√
3

0 0 0

1√
3
− 1√

3


 .
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Chapter 3

Uniform subdivision

So far, we have encountered univariate cubic B-spline subdivision and the bivariate

box-spline scheme on triangles. This chapter revisits the tetrahedral-octahedral scheme

of [SW04] and derives the corresponding quasi-interpolant.

We will construct triangular prism and cube subdivision schemes of class C2 by the

well known technique of tensoring subdivision schemes. The idea behind tensoring is

to combine multiple low dimensional subdivision schemes into one higher dimensional

scheme.

Furthermore, we show how the quasi-interpolant is modified when subdividing over

the more general embedding AZs, where A is an invertible matrix from Rs×s. In all

the subdivision schemes of the thesis the corresponding quasi-interpolant transforms

according to a simple algebraic formula. While leaving the weight stencils of the

subdivision operator invariant, the modified quasi-interpolant maps each monomial

up to a certain degree to the right set of control points, so that applying S∞ returns

the original monomial.

3.1 Cubic precision

In general, the support Ω of the subdivision mask a grows with smoothness demands

on the limit functions or equivalently on the basis function Φ of a scheme. Large

support introduces difficulties not only on the implementation of the scheme, but

also on the extention of the rules to arbitrary meshes.

The case of polynomial reproduction up to degree m = 3 is of special interest

because the subdivision weights are non-trivial only in the one-ring around a control
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point while limit functions are usually of class C2 in the uniform setting. From a

practical point of view, one may also argue that visually appealing, smooth surfaces

or meshes are generated. The mathematical tools in this chapter are all specialized

for the reproduction of cubic polynomials, the setting where m = 3.

Lemma 3.1. Let S∞ : π3(Zs) −→ π3(Rs) and Q : π3(Rs) −→ π3(Zs). Then S∞Q = Id

implies

S∞(f |Zs) = f +∇H∇T f ⇐⇒ Q(f) = f |Zs − (∇H∇T f)|Zs

∀H ∈ Rs×s.

Proof. By straight forward computation

S∞Q(f) = S∞[f |Zs − (∇H∇T f)|Zs ]

= S∞(f |Zs)− S∞[(∇H∇T f)|Zs ]

= f +∇H∇T f −∇H∇T f +
∑

0≤j,|j|=4

βjD
jf

for appropriate factors βj ∈ R. Since with 0 ≤ j, |j| = 4, Djf = 0 ∀f ∈ π3(Rs) the

bottom term simplifies to S∞Q(f) = f .

We may abbreviate with a slight abuse of notation S∞ = Id +∇H∇T and Q =

Id−∇H∇T .

Example 3.1. The tetrahedral-octahedral subdivision scheme from [SW04] is defined

over Z3 by the mask a = 1
23 m ∗m where m ∈ l(Z3) with

m|[−1,1]3 =
1

6




0 0 1 0 3 3 1 3 1

0 3 3 3 6 3 3 3 0

1 3 1 3 3 0 1 0 0


 (3.1.1)

and m is zero everywhere else. We omit the display of a, which is expressed by a

5 × 5 × 5 array with 85 non-zero entries. The support of S is Ω = [−2, 2]3, if the

center element of the latter array is identified with a(0).
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The operator S∞ follows from eq. 2.3.1, which involves the values of the basis

function Φ : Rs −→ R at the integers. [Le03] notices that these correspond to the

entries of the eigenvector to eigenvalue 1 of the matrix originating from the identity

Φ(β) =
∑
α∈Ω

a(α)Φ(2β − α) ∀β ∈ Ω,

which exploits the fact, that Φ is identically zero outside Ω. The eigenvector is scaled

such that the entries sum up to 1. For the tetrahedral-octahedral scheme S the

non-zero evaluations of Φ at the integers are in [−1, 1]3 ⊂ Z3 with

Φ|[−1,1]3 =
1

774




0 0 5 0 38 38 5 38 5

0 38 38 38 288 38 38 38 0

5 38 5 38 38 0 5 0 0


 .

From eq. 2.3.2 we obtain all moments up to order 3 as

m(0,0,0) = 1

m(2,0,0) = m(0,2,0) = m(0,0,2) = 1
3

m(0,1,1) = m(1,0,1) = m(1,1,0) = −1
9

mi = 0 for |i| ∈ {1, 3} .

Substitution into eq. 2.3.1 yields S∞ : π3(Zs) −→ π3(Rs) with

S∞(f |Z3) = f +∇




1
6

− 1
18

− 1
18

− 1
18

1
6

− 1
18

− 1
18

− 1
18

1
6


∇T f

where the coefficients of the mixed partial derivatives are distributed symmetrically.

According to lemma 3.1 the operator S∞ differs from its inverse operator Q essentially

only in the intermediate sign.

The author of the thesis seizes the opportunity to point out, that, although he is

named a coauthor of the paper [SW04], he has really only contributed with a figure.
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Figure 3.1 : Cross–sections of the continuous fractal basis function Φm : R3 −→ R
of the subdivision scheme defined by the mask m in expression 3.1.1. Display of
the function Φm(·, ·, x3) for several fixed values of x3, where the first two parameters
range in the interval [−1, 1]2. The height of each plot is individually scaled to enhance
details. From the 2-scale relation in equation 2.2.1 and the identity a = 1

23 m ∗m it
follows that the basis function of the tetrahedral-octahedral scheme in example 3.1
satisfies Φ = Φm ∗ Φm.
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3.2 Tensor product schemes

Definition 3.1. Let S1 : l(Zs1) −→ l(Zs1) and S2 : l(Zs2) −→ l(Zs2) be two subdivi-

sion operators with finitely supported masks a1 ∈ l(Zs1) and a2 ∈ l(Zs2). The tensor

product subdivision operator S = S1 ⊗ S2 is defined as S : l(Zs1+s2) −→ l(Zs1+s2)

with

S(P )[(α1, α2)] =
∑

β=(β1,β2)∈Zs1+s2

a1(α1 − 2β1)a2(α2 − 2β2)P (β) (3.2.1)

for all (α1, α2) ∈ Zs1+s2 .

One can show that if Φ1 and Φ2 are the basis functions of the schemes S1 and S2,

then the basis function Φ of the tensored scheme S = S1 ⊗ S2 satisfies

Φ(γ) = Φ1(γ1)Φ2(γ2) ∀γ = (γ1, γ2) ∈ Rs1+s2 . (3.2.2)

The moments mi of S can be computed for each i = (i1, i2) ∈ Zs1+s2 as

m(i1,i2) =
∑

(β1,β2)∈Zs1+s2

Φ1(−β1)Φ2(−β2)β
i1
1 βi2

2

=
∑

β1∈Zs1

Φ1(−β1)β
i1
1

∑

β2∈Zs2

Φ2(−β2)β
i2
2 = m1,i1m2,i2

(3.2.3)

where mk,i denotes the i-th moment of scheme Sk for k ∈ {1, 2}.
The following lemma suits our purposes for constructing higher dimensional uni-

form subdivision schemes.

Lemma 3.2. For two subdivision schemes S∞1 : π3(Zs1) −→ π3(Rs1) and S∞2 :

π3(Zs2) −→ π3(Rs2) of the form S∞1 (f |Zs1 ) = f + ∇H1∇T f and S∞2 (f |Zs2 ) = f +

∇H2∇T f , the operator S∞ : π3(Zs1+s2) −→ π3(Rs1+s2) of the tensored scheme S =

S1 ⊗ S2 satisfies

S∞(f |Zs1+s2 ) = f +∇

 H1 0

0 H2


∇T f ∀f ∈ π3(Rs1+s2). (3.2.4)
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Proof. As part of the assumption we derive from eq. 2.3.1 that for k ∈ {1, 2} the

moments mk,i up to order 3 vanish whenever |i| ∈ {1, 3}.
According to eqs. 2.3.1 and 3.2.3 we compute m0 = m1,0m2,0 = 1. Now let

i = (i1, i2) ∈ Zs1+s2 be |i| ≥ 1. For |i| = 1 we can deduce that w.l.o.g. |i1| = 1 and

|i2| = 0, so mi = m1,i1m2,i2 = 0 · 1 = 0. For moments mi with |i| = 2 we destinguish

between three cases:

1) |i1| = 2 and |i2| = 0 so that mi = m1,i1m2,i2 = m1,i1 . Hence, these 2-nd order

moments can be taken from H1.

2) |i1| = 0 and |i2| = 2 is similar to 1), except that the moments now coincide with

the entries of H2.

3) |i1| = 1 and |i2| = 1 so that mi = m1,i1m2,i2 = 0 · 0 = 0, which correspond to the

entries trivially zero in the matrix of eq. 3.2.4.

For |i| = 3 we have w.l.o.g |i1| ∈ {1, 3}. Hence m1,i1 = 0, which cancels the

product with m2,i2 .

With a view towards volumetric subdivision we give

Example 3.2. Tensoring the univariate cubic B-spline scheme S1 from example 2.1

with the box-spline scheme S2 from example 2.2 yields a subdivision scheme for a

uniform triangular prism grid. Using lemma 3.2, we derive for S = S1 ⊗ S2

S∞(f |Z3) = f +∇




1
6

0 0

0 1
6

1
12

0 1
12

1
6


∇T f ∀f ∈ π3(Rs). (3.2.5)

Example 3.3. We construct the subdivision scheme for an s-dimensional cube mesh

by tensoring the univariate cubic B-spline scheme S1 in the manner S = S1 ⊗ ...⊗ S1︸ ︷︷ ︸
s

.

Repeated application of lemma 3.2 yields

S∞(f |Zs) = f +∇




1
6

0 0

0
. . . 0

0 0 1
6


∇T f ∀f ∈ π3(Rs)
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or simply S∞ = Id + 1
6
∆. Note that uniform subdivision on quads over the grid Z2

and on cubes over Z3 corresponds to the cases s = 2 and s = 3.

3.3 Grid transformation

For a particular subdivision scheme the grid Zs is not always considered the canonic

embedding. For instance for the scheme on triangles from example 2.2 we intuitively

consider the set

 1 −1

2

0
√

3
2


Z2 =

{
(z1 − 1

2
z2,

√
3

2
z2)|(z1, z2) ∈ Z2

}

the natural grid embedding, depicted also in figure 4.7.b. In the transformed con-

figuration the symmetries of each weight stencil at a point λ̄ of the triangular grid

coincide with the grid symmetries around λ̄
2
.

We postpone the definition of subdivision over uniform grids of the form AZs

where A has full rank to the next chapter. But in the context of uniform subdivision

we give

Definition 3.2. For a quasi-interpolant Q : πm(Rs) −→ πm(Zs) and a matrix A ∈
Rs×s we define the operator

QA : πm(Rs) −→ πm(AZs)

QA(f)(Az)= Q(f ◦ ϕ)(z) ∀f ∈ πm(Rs), z ∈ Zs

with ϕ : Rs −→ Rs and ϕ(x) = Ax.

Application of the chain rule delivers

Lemma 3.3. Let Q : π3(Rs) −→ π3(Zs) be of the form Q(f) = f |Zs − (∇H∇T f)|Zs

with H ∈ Rs×s. Then the operator QA is of the form

QA(f) = f |AZs − (∇AHAT∇T f)|AZs
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Proof. Again, let ϕ : Rs −→ Rs with ϕ(x) = Ax. Then ∇ϕ = A and

QA(f)(Az) = Q(f ◦ ϕ)(z)

= (f ◦ ϕ)(z)− (∇H∇T (f ◦ ϕ))(z)

= f(Az)−∇[HAT (∇T f) ◦ ϕ](z)

= f(Az)− (∇AHAT∇T f ◦ ϕ)(z)

= f(Az)− (∇AHAT∇T f)(Az).

Example 3.4. Consider the quasi-interpolant of the C2 subdivison scheme on a

uniform triangular mesh presented in example 2.2 with Q = Id−∇H∇T where

H =




1
6

1
12

1
12

1
6


 .

For the grid transformation defined by the matrix

A =


 1 −1

2

0
√

3
2




according to previous lemma the quasi-interpolant QA : π3(R2) −→ π3(AZ2) adapts

as

QA(f) = f |AZ2 − (∇

 1 −1

2

0
√

3
2







1
6

1
12

1
12

1
6





 1 0

−1
2

√
3

2


∇T f)|AZ2

= f |AZ2 − 1

8
(∇∇T f)|AZ2

or simply QA = Id− 1
8
∆.

Example 3.5. Consider the tetrahedral-octahedral scheme from example 3.1. Under

the linear grid transformation with

A =




1 1
2

1
2

0
√

3
2

1
2
√

3

0 0
√

2
3


 and recalling that H =




1
6

− 1
18

− 1
18

− 1
18

1
6

− 1
18

− 1
18

− 1
18

1
6






23

Figure 3.2 : a) displays the embedding of the tetrahedral-octahedral scheme over Z3

in the interval [0, 1]3. b) shows transformed tetrahedral-octahedral grid in A[0, 1]3.
Edges induced by the subdivision weights are added to the graphs. In b) all edges
are of the same Euclidean length. xi for i ∈ {1, 2, 3} label the grid spanning vectors.

the quasi-interpolant QA : π3(R3) −→ π3(AZ3) is found as

QA(f) = f |AZ3 − (∇AHAT∇T f)|AZ3 = f |AZ3 − 1

9
(∆f)|AZ3 ,

which we may simplify to QA = Id − 1
9
∆. The subdivision weights in the mask a of

the scheme feature the same symmetries as the tetrahedral-octahedral grid AZ3 in

figure 3.2.b.
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Chapter 4

Bi-uniform subdivision

First, we give a definition of bi-uniform subdivision, which provides the framework

for combining two possibly distinct subdivision schemes along a common boundary.

In this context, we review existing work on combining triangular-subdivision with

quad-subdivision into a bi-uniform C2 scheme.

We develop tools that simplify the weight stencil computations in the boundary

region of a bi-uniform grid. When combining two volumetric subdivision schemes,

we overcome the need to solve systems of linear equations, which would be fairly

inconvenient to set up for stencils in three dimensions. Instead, the derivation of

the rules for pairwise combinations of volumetric schemes, such as subdivision on

tetrahedra/octahedra, triangular prisms and cubes, reduces to algebraic formula ma-

nipulation.

[L203] develop a technique to analyse the smoothness of a bi-uniform scheme.

The technique is referred to as the joint spectral radius test, which is carried out by a

computer. We apply the test to each of our newly derived schemes to prove that all

combined schemes produce C2 limit functions over R3.

4.1 Bi-uniform subdivision

The following framework is a specialization of the more general definition of non-

uniform subdivision in [L203].

Definition 4.1. Let two invertible matrices A,B ∈ Rs×s with s ≥ 2 satisfy Asj =

Bsj = 0 for all j ∈ {1, ..., s− 1}, Ass, Bss > 0 and A1:s−1,1:s−1Zs−1 = B1:s−1,1:s−1Zs−1.
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Then the bi-uniform grid spanned by A and B is defined as

g(A,B) = A(Zs−1 × Z−0 )
⋃

B(Zs−1 × Z+
0 ).

This definition ensures that the grid is uniform in each half-space, xs > 0 and

xs < 0, and that the two grid halfs spanned by A and B are aligned to share a

common (s− 1)-dimensional boundary A(Zs−1 × {0}) = B(Zs−1 × {0}).
Subdivision operators on bi-uniform grids are linear operators with S : l(g(A, B)) −→

l(g(A, B)) defined by 2c+1 finitely supported masks a−c, ..., a0, ..., ac ∈ l(Zs) for some

c ∈ Z+
0 combined in

S(P )(ψα) =
∑

β∈Zs

aφ(αs)(α− 2β)P (ψβ) ∀α ∈ Zs (4.1.1)

where ψ : Zs −→ g(A, B) with

ψ(α) =





Aα αs ≤ 0

Bα αs > 0

and φ : Z −→ {−c, ..., c} defined by φ(i) = min[max(−c, b i
2
c), c]. Instead of listing

the 2c + 1 masks, it is common to refer to the weight stencils, i.e. the extracts of

each masks evaluated at every second entry, and to visualize how to obtain the sum

in formula 4.1.1 graphically over the grid g(A, B).

Repeated application of the same operator S to an initial set of control points

P0 ∈ l(g(A,B)) is characteristic for stationary subdivision schemes.

Since the set 2−ng(A,B) for n −→∞ converges to a dense subset in Rs, S is said

to be convergent, if for all initial sets of control points P0 ∈ l(g(A,B)) there exists a

continuous function F : Rs −→ R such that

lim
n→∞

max
x∈g(A,B)∩2nX

|SnP0(x)− F (2−nx)| = 0

for any open and bounded domain X ⊂ Rs and if S∞P0 6≡ 0 for some P0 ∈ l(g(A,B)).

The scheme is of class Cm, if F ∈ Cm(Rs) for all possible P0.
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[L203] shows that if S can generate limit functions throughout πm the space of

polynomials of degree ≤ m, then the existence of an inverse Q of S∞ on πm is implied.

Conversely, if the operator S is unknown, subdivision weights can be obtained from

a careful design of the quasi-interpolant operator Q : π3(Rs) −→ l(g(A,B)) because

corrolary 2.1 applies also for X = g(A,B).

The types of quasi-interpolant on g(A,B) considered throughout this thesis are

of the form

Q(f)(x) =





Q−
A(f)(x) xs < 0

Q̂(f)(x) xs = 0

Q+
B(f)(x) xs > 0

x ∈ g(A,B)

where Q− : π3(Rs) −→ π3(Zs) is from the uniform scenario with

Q−(f) = (Id−∇H−∇T )(f)|Zs

so that Q−
A : π3(Rs) −→ π3(A(Zs−1 × Z−)) modifies according to lemma 3.3 to

Q−
A(f) = (Id−∇AH−AT∇T )(f)|A(Zs−1×Z−).

We denote HA = AH−AT . Similarly, we define Q+ and Q+
B so that HB = BH+BT .

The operator for the boundary Q̂ : π3(Rs) −→ π3(A(Zs−1×{0})) is defined separately

so that Q̂ preserves leading coefficients.

To eliminate the redundancy in notation, we simply write QA = Q−
A and QB = Q+

B

and define the global quasi-interpolant over a bi-uniform grid by stating each of the

three operators in

Q(f)(x) =





QA(f)(x) xs < 0

Q̂(f)(x) xs = 0

QB(f)(x) xs > 0

x ∈ g(A,B). (4.1.2)

The transformations of QA and QB ensure that weight stencils from the univariate

setting are preserved at points away from the boundary. Weight stencils whose sup-

port contains points from the boundary are called extraordinary; their computation

is the central focus of this chapter.
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In expression 4.1.2 three possibly distinct quasi-interpolants, QA, Q̂ and QB, de-

termine the evaluation of Q over g(A,B). In general, the support Λ ∈ g(A,B) for

a weight stencil at λ̄ might involve k different quasi-interpolants, in which case we

partition the designated stencil support into the respective k pairwise disjoint sets Λl

for l = 1...k. W.l.o.g. let λ̄ be in the domain of Q1. In analogy with the uniform

setting [Le03] deduces a system of linear equations to solve for the weight stencil ωλ̄

at λ̄ from the rhs in eq. 2.3.3. The equations are of the form

MQ1(Λ1),...,Qk(Λk)ωλ̄ = [MQ1(Λ1) | ... | MQk(Λk)]ωλ̄ = bQ1(λ̄), (4.1.3)

which simply denotes a concatenation of matrices where each MQl(Λl) is a
(

m+s
s

)×|Λl|
matrix and b a

(
m+s

s

)
-column vector with entries

mij = Ql(x
i)(λj) bi = Q1(

xi

2−|i|
)(λ̄)

where the multi-index i ≥ 0, 0 ≤ |i| ≤ m and j ∈ {1, ..., |Λl|}.
All the mathematical tools established in this chapter deal with eq. 4.1.3, solutions

of which represent a weight stencil for a combined subdivision scheme. Note also,

that the computation of the stencils in the uniform setting, originally introduced by

equation 2.3.4, is a special case of the above identity.

Later in the chapter, we explain why, due to the invariance of the grid points

g(A, B) under translation by the s − 1 first column vectors in A (interchangeable

by B) along the boundary, the relation 2g(A,B) ⊂ g(A, B) and the grid uniformity

away from the boundary, finitely many different weight stencils are obtained from

expression 4.1.3 to describe a bi-uniform subdivision scheme.

Example 4.1. Both triangular-quad subdivision schemes of [L203] and [SW03] op-

erate on the bi-uniform grid g(A, B) spanned by

A =


 1 0

0 1


 and B =


 1 −1

2

0 1


 .
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Figure 4.1 : Part of the bi-uniform triangular-quad grid. Edges are displayed as
induced by subdivision weights.

The embedding combines triangles and quads along a common boundary as displayed

in figure 4.1. The quasi-interpolant for uniform quads subdivision was presented in

the scope of example 3.3. Since A is the identity matrix, no essential transformation

occurs and we simply take

QA(f) = (Id−∇



1
6

0

0 1
6


∇T )(f)|Z×Z− . (4.1.4)

For the triangular side, i.e. where x2 > 0, the quasi-interpolant from example 2.2 is

properly transformed to

QB(f) = (Id−∇



1
8

0

0 1
6


∇T )(f)|B(Z×Z+). (4.1.5)

As mentioned before, this transformation assures that ordinary subdivision rules ap-

ply at points whose stencil support does not include boundary elements.

For the definition of the quasi-interpolant on the boundary, [L203] prefers QA over

QB in the sense that Q̂ : π3(R2) −→ π3(A(Z× {0})) is chosen to be

Q̂(f) = (Id−∇



1
6

0

0 1
6


∇T )(f)|Z×{0}, (4.1.6)
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whereas the authors of [SW03] decide to average the matrices HA and HB in

Q̂(f) = (Id−∇



7
48

0

0 1
6


∇T )(f)|Z×{0}. (4.1.7)

Note that in either case Q̂ is chosen as a convex combination of the symbolical form

Q̂µ = µQA + (1− µ)QB

where µ = 1 corresponds Q̂ in eq. 4.1.6 and µ = 1
2

to eq. 4.1.7. Both versions produce

limit functions in C2 over R2, which was proved by applying the joint spectral radius

test. Therefore we write S∞P0 ∈ C2(R2) for all input P0 ∈ l(g(A,B)).

The system of linear equation to solve for the stencil at (0, 0) for µ = 1
2

can be

found in equation 4.3.12 the solution of which is visualized to emphasize the geometric

context in the lhs of figure 4.4. The stencil support is the one-ring of (0, 0) consisting

of the points

Λ =

{
(1,−1), (0,−1), (−1,−1), (1, 0), (0, 0), (−1, 0), (

1

2
, 1), (−1

2
, 1)

}
⊂ g(A,B).

4.2 Close to the boundary

Whenever the quasi-interpolant on the boundary Q̂ is distinct from the quasi-interpolant

of a side of the bi-uniform grid and the ordinary stencil support contains points from

the boundary, weights x have to be adjusted simply because the system of linear

equations in 4.1.3 differs from the formula of the uniform setting 2.3.4. Also, the

stencil support is likely to be extended, an example of which is given in figure 4.2.

For reasonable and big enough support, the linear systems of equations in the more

general expression 4.1.3 might provide a solution for such an extraordinary stencil.

This section deals with how exactly for an existing stencil the support needs to be

extended so that we can ensure a solution for a weight stencil whose ordinary support

touches but does not overlap the boundary and hence needs to be modified. Under

certain conditions the weights are adjusted according to a simple formula.
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Lemma 4.1. Let Λ ⊂ g(A,B) be the support for the stencil at λ̄ ∈ g(A, B) so that

MQ(Λ)x = bQ(λ̄) has a solution, and let QŜ∞ : πm(A(Zs−1 × {0})) −→ πm(A(Zs−1 ×
{0})) be expressable as a convolution operator with finitely supported mask ν and Λ̂

computes ν on Λ̂ ∩ Λ exact for polynomials up to degree m. Then

MQ(Λ\Λ̂),Q̂(Λ̂)x̃ = bQ(λ̄) (4.2.1)

has a solution.

Proof. We constuct a matrix Z ∈ R|Λ∪Λ̂|×|Λ| with

MQ(Λ\Λ̂),Q̂(Λ̂)Z = [MQ(Λ\Λ̂) | MQ̂(Λ̂)]Z = MQ(Λ). (4.2.2)

W.l.o.g. we partition MQ(Λ) as follows

MQ(Λ) = [MQ(Λ\Λ̂) | MQ(Λ∩Λ̂)].

In view of the matrix multiplication the construction reduces to determining a rect-

angular matrix U with

[MQ(Λ\Λ̂) | MQ̂(Λ̂)] ·

 I 0

0 U


 = [MQ(Λ\Λ̂) | MQ(Λ∩Λ̂)]. (4.2.3)

Z takes over without modification the first columns MQ(Λ\Λ̂) that are, by construction,

identical to the first columns of MQ(Λ).

The convolution operator QŜ∞ with the mask ν has the effect that QŜ∞Q̂f = Qf

for all polynomials f up to degree m. Since Λ̂ computes ν on Λ∩ Λ̂, we compute the

matrix U from eq. 2.4.1. Each row of MQ̂(Λ̂), represented by Q̂(f)|T
Λ̂

for a monomial

f , multiplied with U yields exact values of Q(f)|Λ∩Λ̂ that generate the corresponding

column of MQ(Λ∩Λ̂).

With the matrix Z in hand, the system of linear equations in eq. 4.2.1 has a

solution due to the identity 4.2.2 and the assumption that MQ(Λ)x = bQ(λ̄) has a

solution x.
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Figure 4.2 : Selected weight stencils close to the boundary. Stars indicate ordinary
support. Control points marked by squares need to be joined to the support so that
equation 4.2.1 has a solution.

Remark 4.1. The lemma with the constructive proof describes how one round of

subdivision at λ̄ might be factorizable into convolution followed by subdividing with

weights x and support Λ from the uniform setting. Factorization is more apparent

by writing

xT ZT (P |Λ∪Λ̂) = x̃T (P |Λ∪Λ̂) (4.2.4)

to determine (SP )(λ̄), the value at grid point λ̄, by one round of subdivision encoun-

tering only the values of P ∈ l(g(A,B)) at Λ ∪ Λ̂.

Example 4.2. We revisit the triangular-quad scheme from example 4.1, in particular

the choice for Q̂ in equation 4.1.7. Using lemma 4.1, we derive the subdivision rules

for selected weight stencils whose support touches the boundary, as motivated by

figure 4.2.

If the choice of the boundary quasi-interpolant Q̂ is equal to the quasi-interpolant

on the triangular side given in eq. 4.1.5

QBf = (Id−∇



1
8

0

0 1
6


∇T )(f)|g(A,B),

weight stencils at grid points λ̄ with λ̄s > 0 could be taken from the uniform triangular
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scheme with the one-ring of λ̄ as support. In other words, the solutions to

MQB(Λ)x = bQB(λ̄)

are known to exist for certain supports Λ depending on λ̄.

The choice for the boundary operator Q̂ in equation 4.1.7 differs from QB. When

resticted to polynomials we determine the inverse of Q̂ by lemma 3.3 to be Ŝ∞ :

π3(Z× {0}) −→ π3(R× {0}) with

Ŝ∞(f |Z×{0}) = (Id +∇



7
48

0

0 1
6


∇T )f.

Through lemma 4.1 we find that the operator QBŜ∞ : π3(Z × {0}) −→ π3(Z × {0})
plays a crucial role in the weight stencil modification as soon as the support contains

grid points from the boundary. For all polynomials f over R2 with degree ≤ 3

QBŜ∞(f |Z×{0}) = (Id−∇



1
8

0

0 1
6


∇T )(Id +∇




7
48

0

0 1
6


∇T )(f)|Z×{0}

= (Id +∇



1
48

0

0 0


∇T )(f)|Z×{0}.

The operator QBŜ∞ is expressed as a discrete convolution operator on the boundary

Z× {0} with the mask

νB|[−1,1] = [0 1 0] +
1

48
[1 − 2 1] = [

1

48

23

24

1

48
].

Similarly, one shows that QAŜ∞ is equivalent to the convolution operator defined by

the mask

νA|[−1,1] = [0 1 0] +
−1

48
[1 − 2 1] = [

−1

48

25

24

−1

48
].

We proceed using the notation of lemma 4.1. Let Λ ⊂ g(A,B) be the ordinary

stencil support touching, but not overlapping, the boundary. Then the set of grid

points Λ0 = Λ ∩ Z × {0} is the non-empty part of the ordinary support on the

boundary, as illustrated in figure 4.2. The choice of Λ̂ as the one-environment of Λ0

Λ̂ =
{
ξ | ξ ∈ g(A,B), ξs = 0, ∃λ ∈ Λ0 with

∥∥A−1(ξ − λ)
∥∥

1
≤ 1

}
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Figure 4.3 : The application of the convolution operators defined by the masks νA

and νB to the boundary control points followed by ordinary subdivision on each side
as derived in example 4.2.

restricted to the boundary is sufficient to compute νA on Λ ∩ Λ̂, due to the size of

the support of νA. The same construction holds for νB. The ordinary weights are

factored as is eq. 4.2.4, for instance as

1

8
[1 3 3 | 1] ·


 I 0

0 1
48

23
24

1
48


 = [

1

8

3

8

3

8

1

384

23

192

1

384
],

the rhs of which is the solution to a linear system of equations of the form MQB(Λ\Λ̂),Q̂(Λ̂)x̃ =

bQB(λ̄). Another example on the triangular side is

1

8
[1 3 | 3 1] ·




I 0

0
1
48

23
24

1
48

0

0 1
48

23
24

1
48


 = [

1

8

3

8

1

128

139

348

49

348

1

384
].

Figure 4.3 displays the newly derived weight stencils.

Remark 4.2. Since the masks νA and νB are applied to all control points along the

boundary, one round of subdivision can be designed in the following way. First all

the control points on the boundary are convolved with νA and νB. Because the masks

are distinct, the control points on the boundary get duplicated. Ordinary subdivision

rules then apply to the respective result of convolution, to yield the final control

points away from the boundary.
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In [SW03] the factorization is called unzipping followed by subdivision. The pair

(νA, νB) is referred to as the unzipping masks.

4.3 On the boundary

Under certain conditions the intermediate quasi-interpolant Q̂ can be chosen, so that

a weight stencil at any point λ̄ on the boundary of a bi-uniform grid can be con-

structed by the mean of two uniform weight stencils as illustrated in figure 4.4. As

a consequence, the extraordinary stencils closely resemble the two uniform weight

stencils, which is exploited in the implementation of the scheme.

In view of the next lemma we give

Definition 4.2. The half-sided moment to the non-negative multi-index p ∈ Zs

for the weight stencil representative to i ∈ Zs/2Zs of a uniform subdivision scheme

with finitely supported symmetric mask a ∈ l(Zs) over the grid AZs spanned by an

invertible matrix A is defined as

$p,i =
∑

z∈Zs−1×Z+
0

(1− 1

2
δ0,zs)a(i− 2z)[A(z − i/2)]p

where δ is the Kronecker Delta. The order of the half-sided moment is |p|.

There are
(

s
|p|

)
half sided moments of order |p|.

Example 4.3. Recall the triangular-quad subdivision from example 4.1. For the

uniform quad scheme, with the identity as the grid generating matrix, the half-sided

moments of first order for the stencil representatives to (0, 0) and (1, 0) are

$|1|,(0,0) =
1

2

3

32


 1

0


 +

1

2

9

16


 0

0


 +

1

2

3

32


 −1

0


 +

1

64


 1

1


 +

3

32


 0

1


 +

1

64


 −1

1


 =


 0

1
8




$|1|,(1,0) =
1

2

3

8




1
2

0


 +

1

2

3

8


 − 1

2

0


 +

1

16




1
2

1


 +

1

16


 − 1

2

1


 =


 0

1
8



.

To achieve a better overview, we obtain the half-sided moments simultaneously. In

the notation of the definition we write

$(1,0),(0,0) = 0, $(0,1),(0,0) = 1
8
, $(1,0),(1,0) = 0, $(0,1),(1,0) = 1

8
.
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Figure 4.4 : Averaging the weights for a selected stencil on the triangular-quad bound-
ary.

For the triangular scheme on the grid spanned by B =


 1 −1

2

0 1


,

$
′
|1|,(0,0) =

1

2

1

16


 1

0


 +

1

2

5

8


 0

0


 +

1

2

1

16


 −1

0


 +

1

16




1
2

1


 +

1

16


 − 1

2

1


 =


 0

1
8




$
′
|1|,(1,0) =

1

2

3

8




1
2

0


 +

1

2

3

8


 − 1

2

0


 +

1

8


 0

1


 =


 0

1
8




That the half sided moments match as $|1|,i = $′
|1|,i for the representants i = (0, 0)

and i = (1, 0), i.e. stencils at boundary points, is not coincidence. In fact, the half

sided moments of order 3 match as well.

Let Λ ⊂ AZs denote the support for a weight stencil. We use the following

abbreviations to partition Λ:

Λ− = Λ ∩ A(Zs−1 × Z−)

Λ0 = Λ ∩ A(Zs−1 × {0})
Λ+ = Λ ∩ A(Zs−1 × Z+).

Lemma 4.2. Let Q : π2(Rs) −→ l(g(A,B)) be defined as in 4.1.2 as a combina-

tion of the uniform operators QA(f) = (Id − ∇HA∇T )(f)|AZs and QB(f) = (Id −
∇HA∇T )(f)|BZs away from the boundary. Let the half-sided moments of order 1 of

the two uniform schemes match. Then solutions to

MQA(ΛA)xA = bQA(0) and MQB(ΛB)xB = bQB(0) (4.3.1)
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with symmetric supports ΛA and ΛB imply a solution of

MQA(Λ−A), 1
2
(QA+QB)(Λ0

A∪Λ0
B),QB(Λ+

B)x = b 1
2
(QA+QB)(0). (4.3.2)

Proof. Over the course of the proof it becomes clear that xA and xB can be trans-

formed into symmetric solutions to eqs. 4.3.1, i.e. xA(λ) = xA(−λ) for λ ∈ ΛA and

analogous for xB. For simplicity, we assume xA and xB are given symmetrically.

Monomials of even degree are even functions, whereas monomials of odd degree

are odd functions over Rs. The property of even or odd of a monomial is preserved

by the operator QA in the sense that

QA(f)(Az) = QA(f)(−Az) for even f ∈ πn(Rs)

QA(f)(Az) = −QA(f)(−Az) for odd f ∈ πn(Rs)

for all z ∈ Zs. Due to the symmetry of the support ΛA, each control point location

λ ∈ ΛA appears also as −λ ∈ ΛA. We partition the product in eq. 4.3.1 as

MQA(ΛA)xA = [ MQA(Λ−A) | MQA(Λ0
A) | MQA(Λ+

A) ] · [ x−A | x0
A | x+

A ]. (4.3.3)

Recall from equation 4.1.3 that each monomial f of degree ≤ 2 evaluated by the

operator QA over the support ΛA generates a row in MQA(ΛA). Thus for the even

monomials (those of degree 0 and 2) the rows in the matrices MQA(Λ−A) and MQA(Λ+
A)

can be column-permuted to be identical. For all linear monomials the operator QA

acts like the identity and overall we can assure equality for

[ MQA(Λ−A) | MQA(Λ0
A) ] · [ x−A |

1

2
x0

A ] = b̄A (4.3.4)

where b̄A has the entries of 1
2
bQA(0) for row entries corresponding to even monomials.

The definition of the half-sided moment $ei,0, where ei is the i-th unit vector, coincides

with the negative of the result by the matrix product in 4.3.4 at the entry of b̄A that

corresponds to the i-th linear monomial. Hence, we define b̄A at that entry as −$ei,0.

The same considerations hold for QB except that the split is carried out in favor

of the positive support

[ MQB(Λ0
B) | MQB(Λ+

B) ] · [ 1

2
x0

B | x+
B ] = b̄B (4.3.5)
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in which b̄B is constructed analogous to b̄A in the sense that we insert 1
2
bQB(0) for row

entries corresponding to even monomials and the positive half-sided moment $|1|,0 at

the entries corresponding to the linear monomials.

By concatenation and addition of eqs. 4.3.4 and 4.3.5

[ MQA(Λ−A) | MQA(Λ0
A) | MQB(Λ0

B) | MQB(Λ+
B) ] · [ x−A |

1

2
x0

A |
1

2
x0

B | x−B ] = b̄A + b̄B (4.3.6)

of which the excerpt from the center satisfies

[MQA(Λ0
A) | MQB(Λ0

B) ] · [1
2
x0

A |
1

2
x0

B ] = M 1
2
(QA+QB)(Λ0

A∪Λ0
B)x

0 (4.3.7)

for the vector

x0 =





1
2
x0

A(λ) λ ∈ Λ0
A \ Λ0

B

1
2
[x0

A(λ) + x0
B(λ)] λ ∈ Λ0

A ∩ Λ0
B

1
2
x0

B(λ) λ ∈ Λ0
B \ Λ0

A

. (4.3.8)

The entries of b̄A+b̄B on the rhs of eqs. 4.3.6 corresponding to the linear monomials

cancel and the resulting vector equals b 1
2
(QA+QB)(0). Hence from eqs. 4.3.6 and 4.3.7

we construct the system of linear equations in term 4.3.2 to

MQA(Λ−A), 1
2
(QA+QB)(Λ0

A∪Λ0
B),QB(Λ+

B)




x−A

x0

x+
B


 = b 1

2
(QA+QB)(0).

Note that the system of linear equations in 4.3.2 corresponds to the choice of

Q̂ = 1
2
(QA + QB) on the boundary. One can show, under similar conditions, a

solution is generated in general for any Q̂ = (1− µ)QA + µQB.

Remark 4.3. The lemma deals only with stencils at the origin. We are of course

concerned with stencils throughout the boundary. [Le03] shows that solutions to

MQA(ΛA)xA = bQA(λ̄) and MQB(ΛB)xB = bQB(λ̄)
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can alternatively be obtained from

M
QA(ΛA− λ̄

2
)
xA = bQA(0) and M

QB(ΛB− λ̄
2
)
xB = bQB(0) (4.3.9)

whenever QA and QB are linear combinations of differential operators. Similarly, one

derives that the solution space of

MQA(Λ−A), 1
2
(QA+QB)(Λ0

A∪Λ0
B),QB(Λ+

B)x = b 1
2
(QA+QB)(λ̄) (4.3.10)

is equivalent to

M
QA(Λ−A− λ̄

2
), 1

2
(QA+QB)(Λ0

A∪Λ0
B− λ̄

2
),QB(Λ+

B− λ̄
2
)
x = b 1

2
(QA+QB)(0), (4.3.11)

for all weight stencils at a general boundary location λ̄ ∈ g(A,B) where λ̄s = 0. The

translation of the respective supports by − λ̄
2

leaves the set Λ−A in the domain of QA,

the set Λ0
A ∪ Λ0

B in the domain of Q̂ and Λ+
B in the domain of QB.

If the supports ΛA and ΛB of the stencils at λ̄ ∈ AZs of the uniform schemes

on AZs and BZs are symmetric when translated by − λ̄
2
, lemma 4.2 applies to eqs.

4.3.11. Instead of inserting the half-sided moment $|1|,0, the columns corresponding

to the linear monomials in b̄A and b̄B are assigned $|1|,i where i ≡2 z with i ∈ {0, 1}s.

The latter modification requires that in order to combine two subdivision schemes

on g(A, B), all 2|s−1| half-sided moments of order one to the boundary stencil repre-

sentants of the two transformed uniform schemes are identical.

Furthermore, we understand that a bi-uniform subdivision scheme is described by

finitely many weight stencils, due to the translational invariance of the solutions of

the equations 4.3.10 and 4.3.11.

Example 4.4. In the following we derive the weight stencil representative at (0,0) of

the combined triangular-quad scheme, which is depicted in figure 4.4 and for which

the grid spanning matrices A and B are given in example 4.1. The system of linear

equations in 4.3.1 that provides the solution xB for the weight stencil representative
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at (0, 0) ∈ AZ2 of the uniform triangular scheme is




1 1 1 1 1 1 1

1
2

−1
2

1 0 −1 1
2
−1

2

−1 −1 0 0 0 1 1

0 0 3
4

−1
4

3
4

0 0

−1
2

1
2

0 0 0 1
2
−1

2

2
3

2
3

−1
3
−1

3
−1

3
2
3

2
3







1
16

1
16

1
16

5
8

1
16

1
16

1
16




=




1

0

0

− 1
16

0

− 1
12




already partitioned according to the degree of the monomials and the stencil support

as in expression 4.3.3.

Monomials up to degree 2 are involved. The first row shows QB(1) ≡ 1 sampled

over the support. The collection of QB(f) for the two linear monomials sampled over

the grid reproduces the grid itself. Hence, we may interpret rows 2 and 3 as the

support ΛB. Note, that the vector xB is symmetric with respect to the support, as

well as the entries of the three bottom rows of the matrix. The latter correspond to

evaluations of QB(f) for monomials f of degree two over the support.

According to the split carried out in 4.3.5, we remove the first two columns of the

matrix, multiply the weights on the boundary and the vector on the rhs by 1
2

and

insert the half-sided momentum $|1|,(0,0) computed in example 4.3 in columns 2 and

3 of the rhs. This leaves us with



1 1 1 1 1

1 0 −1 1
2
−1

2

0 0 0 1 1

3
4

−1
4

3
4

0 0

0 0 0 1
2
−1

2

−1
3
−1

3
−1

3
2
3

2
3







1
32

5
16

1
32

1
16

1
16




=




1
2

0

1
8

− 1
32

0

− 1
24




.
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The split for the stencil around 0 ∈ BZ2 on the quad side appears as




1 1 1 1 1 1

1 0 −1 1 0 −1

−1 −1 −1 0 0 0

2
3

−1
3

2
3

2
3

−1
3

2
3

−1 0 1 0 0 0

2
3

2
3

2
3

−1
3
−1

3
−1

3







1
64

3
32

1
64

3
64

9
32

3
64




=




1
2

0

−1
8

− 1
24

0

− 1
24




.

Since the boundary support of both stencils is Λ0
A = Λ0

B = {(1, 0), (0, 0), (−1, 0)}, we

manage to reduce the matrix [MQA(Λ0
A) | MQB(Λ0

B) ] from 6 to 3 columns. The solution

for the weight stencil at 0 ∈ g(A,B) is then apparent in




1 1 1 1 1 1 1 1

1 0 −1 1 0 −1 1
2
−1

2

−1 −1 −1 0 0 0 1 1

2
3

−1
3

2
3

17
24

− 7
24

17
24

0 0

−1 0 1 0 0 0 1
2
−1

2

2
3

2
3

2
3

−1
3

−1
3

−1
3

2
3

2
3







1
64

3
32

1
64

5
64

19
32

5
64

1
16

1
16




=




1

0

0

− 7
96

0

− 1
12




(4.3.12)

as the “average” of the two uniform stencils.

Remark 4.4. The reason why for two schemes that seperately reproduce cubic poly-

nomials the combined scheme might not is that grid spanning matrices of g(A,B)

such that the half-sided moments of order 1 and 3 match simultaneously do not exist.

The half-sided moments of even order do not harm the construction given symmetric

support.

So far, we have ensured, that weights on the boundary can be averaged from

the weights of the two uniform schemes along the boundary as seen in figure 4.4.
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Figure 4.5 : Averaging the weights for stencils at boundary points is preceeded by the
application of convolution operators for a selected stencil from the triangular-quad
scheme.

Recall that to validly subdivide points close to the boundary a convolution operator is

applied along the boundary. In view of a simple implementation it is desirable to first

convolve the boundary points and then apply weight stencils combined by ordinary

weights over the entire mesh. Figure 4.5 illustrates this principle for a stencil at a

point on the boundary of the triangular-quad scheme. Hence, we establish the last

small result.

Remark 4.5. Note, that lemma 4.1 applies to each of the systems of linear equations

in 4.3.4 and 4.3.5 that are here restated as

[ MQA(Λ−A) | MQA(Λ0
A) ] · [ x−A |

1

2
x0

A ] = b̄A

and

[ MQB(Λ0
B) | MQB(Λ+

B) ] · [ 1

2
x0

B | x+
B ] = b̄B.

Suppose the ordinary supports restricted to the boundary satisfy Λ0 = Λ0
A = Λ0

B.

Then lemma 4.1 grants a solution of the following form

[ MQA(Λ−A) | M 1
2
(QA+QB)(Λ̂) ]


 I 0

0 UA


 · [ x−A |

1

2
x0

A ] = b̄A (4.3.13)
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[ M 1
2
(QA+QB)(Λ̂) | MQB(Λ+

B) ]


 UB 0

0 I


 · [ 1

2
x0

B | x+
B ] = b̄B (4.3.14)

for the choice Ŝ∞ = 1
2
(S∞A + S∞B ) and a sufficient support extention Λ̂ of Λ0. As

already noted in the proof of lemma 4.2 the identity

b̄A + b̄B = b 1
2
(QA+QB)(0)

holds, so that eqs. 4.3.13 and 4.3.14 are joined to

MQA(Λ−A), 1
2
(QA+QB)(Λ̂),QB(Λ+

B) · [x−A |
1

2
(UAx0

A + UBx0
B) | x+

B] = b 1
2
(QA+QB)(0).

For simplicity we demanded the equality of the boundary support Λ0
A = Λ0

B so

that the solution given by 4.3.8 does not require differentiation when multiplying with

UA and UB. A more general term can be obtained.

4.4 Volumetric examples

In this section we demonstrate how the previously developed tools aid us to com-

bine various pairs of uniform volumetric subdivision schemes. Since the computation

is similar among all pairwise combinations, we work out the details thoroughly in

the first example and proceed in a somewhat faster manner thereafter. In the sec-

ond example we demonstrate that, in general, weight stencils leading to polynomial

reproduction are not uniquely determined.

Example 4.5. We combine triangular prisms (A) with the tetrahedra-octahedra

lattice (B) in a bi-uniform grid g(A,B) with

A =




1 −1
2

0

0
√

3
2

0

0 0 1


 and B =




1 1
2

1
2

0
√

3
2

1
2
√

3

0 0 1


 .

A region of the grid is visualized in figure 4.6.b. Motivated by lemma 4.2 we design the

matrices A and B so that the half-sided moments of first order for the four boundary
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Figure 4.6 : Parts of bi-uniform grids. Subdivision rules on volumetric grids such as
illustrated in b)-e) are derived in section 4.4.

weight stencil representatives match to

$|1|,(0,0,0) = $|1|,(1,0,0) = $|1|,(0,1,0) = $|1|,(1,1,0) =




0

0

1
8




for the uniform prism scheme on AZ3 and the uniform tetrahedral-octahedral subdi-

vision scheme on BZ3. Both schemes were discussed in examples 3.1 and 3.2.

We recall that the quasi-interpolant for the uniform tetrahedral-octahedral scheme

is Q : π3(R3) −→ π3(Z3) with

Q(f) = f |Z3 − (∇




1
6

− 1
18

− 1
18

− 1
18

1
6

− 1
18

− 1
18

− 1
18

1
6


∇T f)|Z3 .

According to lemma 3.3 on the transformed uniform grid QB : π3(R3) −→ π3(BZ3)

with QB(f) = f |BZ3 − (∇HB∇T f)|BZ3 in which the coefficients of the second order
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derivatives are gathered in

HB =




1
9

0 0

0 1
9

0

0 0 1
6


 .

Next, we consider the transformed prism grid, for which the quasi-interpolant operator

is taken from expression 3.2.5, though the dimensions are permuted according to

(1 2 3) −→ (2 3 1) so that triangular subdivision is performed in the first two

dimensions and cubic B-spline subdivision orthogonal to the boundary. Therefore

the operator Q : π3(R3) −→ π3(Z3) is modified to

Q(f) = f |Z3 − (∇




1
6

1
12

0

1
12

1
6

0

0 0 1
6


∇T f)|Z3 ,

which yields QA : π3(R3) −→ π3(AZ3) with QA(f) = f |AZ3 − (∇HA∇T f)|AZ3 where

HA =




1
8

0 0

0 1
8

0

0 0 1
6


 .

In view of combining the two schemes, we define Q : π2(Rs) −→ l(g(A,B)) as

Q(f)(x) =





f(x)− (∇HA∇T f)(x) xs < 0

Q̂(f)(x) xs = 0

f(x)− (∇HB∇T f)(x) xs > 0

∀x ∈ g(A,B).

For the boundary we choose Q̂ : π2(R2) −→ π2(g(A,B)) as

Q̂(f) = (f −∇1

2
(HA + HB)∇T f)|g(A,B),

i.e. the average of the quasi-interpolants QA and QB. The ordinary weight stencils

are known for each uniform scheme, they apply away from the boundary. As soon

as a stencil support touches, but does not overlap the boundary, lemma 4.1 suggests
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to precede subdivision by applying one of the two appropriate convolution operators

along the boundary A(Z2×{0}), for which we will now derive the masks. For a stencil

at a point on the boundary remark 4.5 applies. The enumeration is complete because

each ordinary stencil is supported at most over the one-ring.

In the two extraordinary cases, the support Λ involves points from the boundary,

denoted by Λ0 6= ∅, and we join the set Λ̂ to the support so that Λ̂ computes QAŜ∞

and QBŜ∞ at the values of Λ0 for polynomials up to degree 2. Recall also illustrations

4.3 and 4.5 on stencil support extention for the bivariate setting. Therefore, we obtain

QAŜ∞ = (Id−∇HA∇T )(Id +
1

2
∇(HA + HB)∇T )

= Id +∇(
HA + HB

2
−HA)∇T

= Id +∇




− 1
144

0 0

0 − 1
144

0

0 0 0


∇T .

The boundary region of g(A,B) is extracted as


 1 −1

2

0
√

3
2


Z2, on which accord-

ing to expression and support Θ in 2.4.5 the operator QAŜ∞ is expressed by the

discrete convolution operator defined by the mask

νA|Θ =




0 0

0 1 0

0 0


 +

−1

144




2
3

2
3

2
3
−4 2

3

2
3

2
3


 =




−1
216

−1
216

−1
216

37
36

−1
216

−1
216

−1
216


 .

Note, that QAŜ∞ contains no partial derivatives involving the variable x3, i.e. or-

thogonal to the boundary.
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The operator QBŜ∞ reduces to

QBŜ∞ = (Id−∇HB∇T )(Id +
1

2
∇(HA + HB)∇T )

= Id +∇(
HA + HB

2
−HB)∇T

= Id +∇




1
144

0 0

0 1
144

0

0 0 0


∇T ,

equivalently expressed by convolution with the mask

νB|Θ =




0 0

0 1 0

0 0


 +

1

144




2
3

2
3

2
3
−4 2

3

2
3

2
3


 =




1
216

1
216

1
216

35
36

1
216

1
216

1
216


 . (4.4.1)

Notice that the operators QAŜ∞ and QBŜ∞ differ only by an intermediate sign,

which is due to the special form of Q̂.

We conclude that due to the shape of Θ, the boundary part of the support Λ0 of

a weight stencil needs to be extended to the one-environment of Λ0 restricted to the

boundary.

In most combinations of two subdivision schemes on a bi-uniform grid g(A,B)

essentially different choices for the grid spanning matrices A and B are possible, as

demonstrated in

Example 4.6. We consider the quads of the uniform prism grid touching the uniform

tetrahedral-octahedral grid along a common uniform boundary. Each quad of a prism

is then touched by a triangular face of a tetrahedron and an octahedron as illustrated

in 4.6.c.

Two choices for boundary alignment enumerate as follows: In the first case, let

the grid g1(A,B) be generated by

A =




1 0 −1
2

0 1 0

0 0 1


 and B =




1 0 1
3

0 1 1
3

0 0 1



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−2 0 2
−3

−2

−1

0

1

2

3

a)
−2 0 2

−3

−2

−1

0

1

2

3

b)

Figure 4.7 : Possible choices for boundary alignment when combining the quads of
prisms with the triangles of the tetrahedral-octahedral mesh. In the left image the
quads remain in their natural embedding, whereas in the right the triangles are aligned
in their equilateral configuration.

in which the boundary A(Z2 × {0}) is spanned by the first two unit vectors, as

displayed in figure 4.7.a. The diagonals indicate additional edges induced by the

subdivision weights between tetrahedra and octahedra. The matrices that represent

the linear combination of second order derivatives in the quasi-interpolants of the

uniform schemes can be computed with aid of lemma 3.3:

HA =




1
8

0 0

0 1
6

0

0 0 1
6


 and HB =




4
27

−2
27

0

−2
27

4
27

0

0 0 1
6


 .

Discretizing the non-vanishing partial derivatives together with the identity in the

operators QAŜ∞ and QBŜ∞ yields the masks

νA|[−1,1]2 =




1−ζ
54

4ζ−1
108

−1−ζ
54

5+16ζ
432 1 + −1−16ζ

216
5+16ζ
432

−1−ζ
54

4ζ−1
108

1−ζ
54


 , νB|[−1,1]2 =




ζ−1
54

1−4ζ
108

1+ζ
54

−5−16ζ
432 1 + 1+16ζ

216
−5−16ζ

432

1+ζ
54

1−4ζ
108

ζ−1
54




that must be applied to the boundary control points before subdividing with ordinary

weight stencils. νB|[−1,1]2 where ζ = 0 is displayed in figure 4.8.c1.

As a second possibility for an embedding of the combined scheme to g2(A,B), we
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define A and B as

A =




1 1
2

−1
2

0
√

3
2

0

0 0 1


 and B =




1 1
2

1
2

0
√

3
2

1
2
√

3

0 0 1




and achieve sheared quads vs. equilateral triangles on the boundary as displayed in

figure 4.7.b. This choice results in the convolution masks

νA|Θ =




1
27

−5
108

−11
432

77
72

−11
432

−5
108

1
27


 and νB|Θ =




−1
27

5
108

11
432

67
72

11
432

5
108

−1
27




of which νB|Θ is depicted in figure 4.8.c2.

In the following examples, we visit additional combined schemes, where the bound-

ary is patched by quads from one side and by triangles from the other. We have seen

in the previous example that the support extention for the subdivision weights is

somewhat smaller when shearing the quads to meet the triangles on the equilateral

triangular grid as illustrated in the right of figure 4.7. The support for the convolu-

tion masks is then Θ from expression 2.4.5 instead of [−1, 1]2. This support might be

considered advantageous for implementation. Hence, we restrict attention to these

boundary configurations.

Example 4.7. The tetrahedral-octahedral scheme (A) is combined with the uniform

scheme for cubes (B) discussed in example 3.3 on the grid g(A,B). The generating

matrices are

A =




1 1
2

1
2

0
√

3
2

1
2
√

3

0 0 1


 and B =




1 1
2

0

0
√

3
2

0

0 0 1


 .
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Figure 4.8 : Convolution masks for various pairwise combinations of uniform subdivi-
sion schemes to apply on the boundary of g(A,B). Thick lines indicate edge-adjacent
triangles of prism; double lines indicate edge-adjacent quads of cube.
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Analogous to the computations in the first example of this section 4.5 we obtain

νA|Θ =




−1
27

5
108

5
108

8
9

5
108

5
108

−1
27


 and νB|Θ =




1
27

−5
108

−5
108

10
9

−5
108

−5
108

1
27




of which νA|Θ is displayed in figure 4.8.d.

Example 4.8. We align the triangular boundary of the uniform prism grid (A) with

the quads of the cube scheme (B). A region of the bi-uniform grid g(A,B) is displayed

in figure 4.6.d where the matrices are chosen to be

A =




1 −1
2

0

0
√

3
2

0

0 0 1


 and B =




1 1
2

0

0
√

3
2

0

0 0 1


 .

Here, the operators QAŜ∞ and QBŜ∞ are equivalent to the discrete convolution

operators defined by the masks

νA|Θ =




−1
24

1
24

1
24

11
12

1
24

1
24

−1
24


 and νB|Θ =




1
24

−1
24

−1
24

13
12

−1
24

−1
24

1
24


 .

Remark 4.6. The subdivision scheme on the common boundary of a uniform prism

grid connected to the uniform cube grid so that the quads of the cubes meet the quads

of the prisms, follows from tensoring the triangular-quad scheme reviewed in example

4.1 with the univariate B-spline scheme. The resulting convolution mask displayed in

figure 4.8.f resembles therefore the mask of the triangular-quad scheme.

That the combined scheme produces globally C2 limit functions follows from the

fact that both the triangular-quad scheme and the univariate cubic B-spline scheme

are of class C2.

The support of the weight stencils of the three uniform schemes, tetrahedral-

octahedral, prism and cube, are symmetric when aligned around zero. Each support
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does not exceed the one-ring. The half sided moments of order 1 of all transformed

uniform schemes in examples 4.6–8 for the four boundary weight stencil representa-

tives are

$|1|,(0,0,0) = $|1|,(1,0,0) = $|1|,(0,1,0) = $|1|,(1,1,0) =




0

0

1
8


 .

Hence, either lemma 4.1 or remark 4.5 applies, when ordinary stencil support involves

the boundary. We can assure that after applying the two convolution masks on the

common boundary and creating duplicates of the boundary control points, to which

we refer from now on as unzipping, one round of subdivision is completed by applying

ordinary weight stencils or an averaged combination of these stencils.

4.5 Smoothness analysis

[L203] developed an analysis procedure to prove smoothness properties of a subdivi-

sion scheme. The technique is referred to as the joint spectral radius test and applies

to uniform schemes as well as combined subdivision schemes. The test can assert

that for a particular scheme the m-th degree Taylor expansion coefficients of any

limit function on an appropriate dense diadic point set are uniformly bounded, which

guarantees that the scheme is of class Cm.

In the following, we revisit the four combined volumentric schemes derived in the

previous section and check whether they produce globally S∞P0 ∈ C2 limit functions,

i.e. including the crucial region of the boundary and environment, for all possible

initial control point assignments P0 ∈ l(g(A,B)). Therefore, it is necessary that each

of the uniform volumetric subdivision schemes is of class C2.

We set up the joint spectral radius test for each combined volumetric scheme over

the grid g(A,B) to prove that the 2-nd degree Taylor expansion coefficients at the

diadic points of the boundary interval

Υ = A([0, 1]2 × {0})
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are uniformly bounded. The set Υ is also described by the convex hull of the four

vectors τ1 = 0, τ2 = A:,1, τ3 = A:,2 and τ4 = τ2 + τ3.

In order to perform the test, we fix the support Λ =
{
λ1, ..., λ|Λ|

} ⊂ g(A,B)

so that the limit function S∞P0 restricted over the subset A([0, 1]2 × [−1, 1]) ⊂ R3

depends only on values P0|Λ and so that (SP0)|Λ+τi
for i = 1...4, i.e. the values of the

control points after one round of subdivision at Λ + τi, depend only on the control

points P0|Λ. Figure 4.6.b–e displays the extent of a feasible choice for Λ for each

of the four combined schemes, when reattaching the removed rectangular solid and

centering the lattice around the origin.

Let δλ ∈ l(g(A,B)) be the set of control points with δ(λ) = 1 and zero everywhere

else. With the finite set Λ we are able to capture the behaviour of each scheme over

Υ in matrix form in the sense that for an initial set of control points P0 the value of

the limit function at a diadic point d in Υ is obtained as the matrix product

(S∞P0)(d) = ...Mε3Mε2Mε1P0|L (4.5.1)

where Mi ∈ R|Λ|×|Λ| with

(Mi)(j,k) = (Sδλk
)(λj + τi) j, k ∈ {1, ..., |Λ|} , i ∈ {1, ..., 4}

and ε ∈ {1, 2, 3, 4}N depending on the bivariate diadic expansion of d.

In order to yield an iteration that converges to the Taylor expansion coefficients

of the limit function S∞P0 of up to order 2, we perform a change of basis. Due to

the relation

SQxj = Qσxj = 2|j|Qxj ∀j with 0 ≤ |j| ≤ 2

obtained by corollary 2.3.3 where X = g(A,B) the element Qxj ∈ l(g(A,B)) is an

eigenfunction corresponding to the eigenvalue 2|j| of the operator S. Now we restrict

S and the known eigenfunctions to the support Λ and define

Ek = [ (Qxj)|Λ | 0 ≤ j and |j| = k ]
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as the concatenation of Qf |Λ for all monomials f of degree k. Performing a change

of basis of the subdivision matrices to

M̃i = V −1MiV i ∈ {1, ..., 4} ,

where V ∈ R|Λ|×|Λ| is a concatenation of the rectangular matrices E0, E1 and E2 with

the nullspace of [E0 | E1 | E2]
T leaves each M̃i in the form

M̃i =


 Θi Ci

0 Yi


 .

In this expression the submatrix Θi ∈ R10×10 for i ∈ {1, ..., 4} has the structure

Θi =




1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1

2 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1

2 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1

2 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1

4 0 0 0 0 0

0 0 0 0 0 1
4 0 0 0 0

0 0 0 0 0 0 1
4 0 0 0

0 0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 0 0 1
4 0

0 0 0 0 0 0 0 0 0 1
4




,

where the ∗ indicates a possibly non-zero entry. The nullspace computation of

[E0 | E1 | E2]
T is numerically stable, when orthonormalizing the vectors in Ek for

k = 1 and k = 2.

The joint spectral radius of the set of matrices Σ = {Y1, ..., Y4} is defined as

ρ∞(Σ) = lim
n−→∞

ρn(Σ),

i.e. the limit of the monotonically decreasing sequence

ρn(Σ) = max{
∥∥YεnYεn−1 ...Yε1

∥∥ : ε ∈ {1, ..., 4}n} 1
n . (4.5.2)
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[L203] shows that if ρn({Y1, ..., Y4}) < 1
4

for some k ∈ N, the combined subdivision

scheme is of class C2. We obtained

Example ρ10({Y1, ..., Y4}) max[eig(Yi) < 1
4
]

4.5 0.22459... 0.1359...

4.6.b 0.21825... 0.1351...

4.7 0.21493... 0.1359...

4.8 0.20778... 1
8

Hence, each of the bi-uniform volumetric schemes derived in section 4.4 yields limit

functions over R3 that are two times differentiable. The interested reader may obtain

the matrices Mi as well as Yi for the four schemes in the mat–format from

www.subdivision.org/jsr vol.zip

Remark 4.7. The choice of the matrix V has great influence on the rate of conver-

gence of the sequence ρn({Y1, ..., Y4}). The number of multiplications can be lowered

from 4n(n− 1) using intermediate results at the expense of storage. [ZL04] suggests

also to diagonalize the matrices M̃i using further common eigenspaces to eigenvalues

< 1
4
. Under the objective of minimizing ρn we found the choice of the 2-norm in

equation 4.5.2 superior to the 1-norm or the ∞-norm, although computationally less

efficient.



55

Figure 4.9 : Visualisation of smoothness using a 3d checker board texture on cross-
sections of the deformed and subdivided mesh. a) shows test mesh. Texture coordi-
nates are assigned to each vertex of subdivided mesh in b). The texture coordinate
is identical to the position of the respective vertex. Various deformations in c–e).
Subdivision with an algorithm of class C0 and deformation in f).
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Chapter 5

Volumetric subdivision

In this chapter we achieve the main goal of the thesis, namely to define a new volu-

metric subdivision scheme that operates on tetrahedra, octahedra, triangular prisms

and cubes of arbitrary topology. Our subdivision scheme yields C2 limit functions

everywhere except at extraordinary edges and vertices and except where triangles of

prisms touch quads of prisms.

When combining two volumetric schemes on a bi-uniform grid, examples of which

are displayed in figure 4.6, we are able to choose a particular set of rules that can

be interpreted as the application of two passes over the mesh: unzipping followed

by ordinary subdivision rules. For control points on the boundary, the respective

ordinary stencils were averaged together.

Because the ordinary subdivision rules might not be applicable at all locations of a

volumetric meshes of arbitrary topology, we design one round of subdivision as three

– fairly easy to implement – steps that apply globally: unzipping, linear subdivision

and averaging.

On the boundary of the mesh, we apply a surface subdivision scheme. Since the

boundary of our general volume mesh consists of triangles and quads, we recommend

the triagular-quad scheme of [SW03] on the exterior of the mesh. We review the

scheme briefly in example 5.2. The following description accounts for the remaining

interior vertices, those that are entirely surrounded by volume shapes, and vertices

inserted inside volume shapes.
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Figure 5.1 : One round of subdivision displayed at a part of an initial mesh. The
vertices vi1 , vi2 and vi3 are assumed to be entirely surrounded by volumetric shapes.
The extension toc abbreviates “tetrahedral-octahedral”. Selected vertices and clones
are labeled.

5.1 Algorithm overview

One round of subdivision on a volumetric mesh of arbitrary topology is divided into

three consecutive steps called (1) unzipping, (2) linear subdivision and (3) averaging.

Thereby, the algorithm follows the principle layout already proposed in the triangular-

quad paper [SW03].

In the unzipping procedure (1), we compute for each vertex vi of the input mesh

three temporary vertices

vi −→ {ci,toc, ci,pris, ci,cube}

to which we refer as clones of vi. Their position is usually very close to the original

vertex position. How precisely to generate the position of each clone is explained in

detail in the next section.

Step number (2), linear subdivision, is a loop over all shapes, in which each tetrahe-
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dron is split into 4 smaller tetrahedra and 1 octahedron. An octahedron decomposes

into 8 tetrahedra and 6 tetrahedra. A triangular prism makes 8 new triangular prisms

and finally a cube, splits into 8 cubes.

As suggested by figure 5.1, the vertices of the resulting shapes are computed

with the corresponding clones. Inserted vertices are simply edge-midpoints, face-

midpoints and inside an octahedron and a cube, a vertex as the mean of all clones of

the respective shape.

For each of the four shape types, there is a characteristic matrix defined, which

comes into play in procedure (3), denoted the averaging pass. In a loop over all the

newly created shapes from step (2), the vertices of each shape are concatenated in a

matrix, which is then multiplied by the characteristic matrix (not to be confused by

the term characteristic map). From the result, we extract new vertex positions that

together replace the previous vertices of the shape. Finally, vertices that might differ

in position but are topologically identical, are averaged together in a simple affine

combination.

As mentioned before, on the boundary of the mesh, surface subdivision is ap-

plied, not volume subdivision. Otherwise, the mesh would contract in an undesirable

manner and is in the limit not C2 almost everywhere on the exterior.

Then, one round of subdivision is complete and the output is again a volumetric

mesh.

5.2 Unzipping

The convolution operators from the volumetric examples in section 4.4 are of the

symbolical form

Id + α∂x1,x1 + β∂x1,x2 + γ∂x2,x2 (5.2.1)

with small coefficients α, β, γ ∈ R and where the first two dimensions, x1 and x2,

parametrize the boundary. Expression 5.2.1 inspires our principle layout.

Unzipping a volumetric mesh means that the original position of each vertex is
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distorted by affine combinations of vertices in the one-ring. In expression 5.2.1 the

Id operator corresponds to the original vertex position. The linear combinations, in

which the weights sum to zero, is due to the discretization of the partial derivatives

and the factors α, β and γ.

As mentioned in the overview, for each vertex vi unzipping outputs three clones

which we denote by ci,toc, ci,pris, and ci,cube. The formulas for the position of the clones

are

ci,toc = vi + δ(4toc,4pris)i + δ(4toc, ¤pris)i + δ(4toc,¤cube)i

ci,pris = vi − δ(4toc,4pris)i + δ(4pris,¤cube)i + δ(¤pris,¤cube)i

ci,cube = vi − δ(4toc, ¤cube)i − δ(4pris,¤cube)i − δ(¤pris,¤cube)i.

(5.2.2)

The notation ought to suggest that only heterogeneous pairs of boundary elements

of volumetric shapes adjacent to the i-th vertex contribute to the distortions δ. If a

vertex is completely surrounded by shapes of one type, the three clones coincide with

the vertex position vi.

With boundary elements we refer to the 4 triangles of the surface of a tetrahedra,

while each octahedron has 8 triangles as boundary elements. We consider these

boundary elements to be of class toc. Each prism contains 2 triangles and 3 quads

as boundary elements, each of which are of class pris. And last, the 6 quads for each

cube in the mesh are of class cube.

A pair of boundary elements (b1, b2) is considered heterogenous whenever b1 be-

longs to a different class than b2. Quite intuitively, a pair (b1, b2) is called touching,

whenever b1 shares at least 3 vertices with b2.

Since a boundary element of triangular prisms is either a triangle or a quad, we

distinguish between the four boundary types

4toc, 4pris, ¤pris, ¤cube.

In eqs. 5.2.2 the vector δ(4toc,4pris)i represents the distortion at the i-th ver-

tex caused by a tetrahedral-octahedral boundary touching triangles of a prism. We
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compute δ(4toc,4pris)i in the following way. Let there be n distinct boundary pairs

(b1, b2)k with k = 1...n that satisfy b1 is a triangle of type 4toc adjacent to vertex vi

and touching b2, which is of type 4pris, i.e. triangular boundary of a prism. We ar-

range the three vertices of triangle b1 of the k-th pair in a 3×3 matrix Mk = [vi|vpk
|vqk

]

for appropriate but interchangeable vertex indices pk and qk. Then

δ(4toc,4pris)i =





0 n = 0

1
n

∑n
k=1 Mk




− 1
36

1
72

1
72


 n > 0.

For instance in figure 5.1 the triangle (vi1 , vi2 , vi3) is a boundary of class toc and as

a boundary of class pris and thus contributes to δ(4toc,4pris)il for l = 1...3 at the

three vertices.

The other distortions are a little more complicated to obtain, but follow the same

idea of contributing boundary pairs.

The vector δ(4toc,¤pris)i is the distortion caused by tetrahedral-octahedral bound-

ary touching quads of triangular prisms at vertex vi. Let there be n distinct boundary

pairs (b1, b2)k with k = 1...n that satisfy b1 is a triangle of type 4toc adjacent to the i-

th vertex and touching b2, which is of type ¤pris. For each pair (b1, b2)k we distinguish

between three topologically distinct configurations which are depicted on the rhs of

figure 5.2.c. Of relevance is, whether vertex vi lies opposite to the quad vertex of b2,

that is not shared with the triangle b1. Furthermore, we detect whether vi together

with another vertex of b1 forms an edge that is part of triangular boundary of the

prism. Those edges are indicated by thickened lines in figure 5.2.c.
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After we have looped over all such pairs (b1, b2)k, we have accumulated

δ(4toc,¤pris)i =
1

n
[

µ1∑

k1=1

[vi|vpk1
|vqk1

]




5
144

−1
9

11
144


 +

µ2∑

k2=1

[vi|vpk2
|vqk2

]




− 31
144

11
144

5
36




+

µ3∑

k3=1

[vi|vpk3
|vqk3

]




− 1
36

5
36

−1
9


]

(5.2.3)

as the distortion term for appropriate vertex indices pkl
and qkl

for l = 1...3 in each

of the three sums. The value µ1 encodes how often the first topological case occurs

at the i-th vertex and analogous for µ2 and µ3; we set n = µ1 + µ2 + µ3.

For the distortions δ(4toc,¤cube)i and δ(4pris,¤cube)i caused by boundary pairs

(b1, b2)k, we distinguish two topological distinct configurations as displayed in rhs of

figure 5.2.d and 5.2.e. The criterion is simply whether vertex vi lies opposed to the

quad vertex of b2 that is not shared by the triangle b1. In the same notation and

procedure of the previous examples we define with n = µ1 + µ2

δ(4toc,¤cube)i =
1

n
[

µ1∑

k1=1

[vi|vpk1
|vqk1

]




− 1
36

−1
9

5
36


 +

µ2∑

k2=1

[vi|vpk2
|vqk2

]




− 5
18

5
36

5
36


] (5.2.4)

for appropriate vertex indices pkl
and qkl

for l ∈ {1, 2}, closely resembled by the

definition of

δ(4pris,¤cube)i =
1

n
[

µ1∑

k1=1

[vi|vpk1
|vqk1

]




0

−1
8

1
8


 +

µ2∑

k2=1

[vi|vpk2
|vqk2

]




−1
4

1
8

1
8


]. (5.2.5)

Finally, we loop over each quad at a vertex vi that is shared by a prism and a cube.

Let there be n of those quads. Exactly one edge (vi, vpk
) of the quad is part of the

triangular boundary of the prism for an appropriate vertex index pk with k = 1...n.
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Figure 5.2 : The masks of the convolution operators are split to encode topological
distinct positions of a vertex in a heterogeneous boundary pair. The masks to the
right of the arrows are used in the unzipping procedure of our algorithm. Shaded
regions symbolize boundary pair overlap. Thick lines indicate edge-adjacent triangles
of a prism; double lines indicate edge-adjacent quads of a cube.
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Figure 5.3 : Example mesh consists of 2 tetrahedra, 1 octahedron, 3 triangular prism,
and 4 cubes. Vertices are enumerated as needed. On the right, the white faces indicate
heterogeneous touching boundary pairs of the various type combinations.

Those edges around the i-th vertex contribute to

δ(¤pris,¤cube)i =
1

n

n∑

k=1

[vi|vpk
]


 − 1

24

1
24


 = − 1

24
vi +

1

24n

n∑

k=1

vpk
. (5.2.6)

For the sake of visual appearance we ommited to state until now, that each dis-

tortion is the zero vector whenever n = 0.

Example 5.1. Let us consider the mesh depicted in figure 5.3. We aim to compute

the three clones produced by the interior vertex v5 −→ {c5,toc, c5,pris, c5,cube}.
Only one boundary triangle adjacent to v5 is shared by a tetrahedra (or octahedra)

and a prism. The triangle consists of the vertices (v5, v8, v12) and contributes in

δ(4toc,4pris)5 as

δ(4toc,4pris)5 = [v5 | v8 | v12 ]




− 1
36

1
72

1
72


 = − 1

36
v5 +

1

72
(v8 + v12).
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To obtain the distortion δ(4toc,¤pris)5 we detect that four boundary triangles

of the tetrahedra and octahedra adjacent to v5 are also part of quad boundaries of

triangular prisms. Therefore

δ(4toc,¤pris)5 =
1

4
([v5 | v13 | v12]




5
144

−1
9

11
144


 + [v5 | v7 | v12]




− 31
144

11
144

5
36




+ [v5 | v2 | v12]




− 31
144

11
144

5
36


 + [v5 | v6 | v13]




− 1
36

5
36

−1
9


),

(5.2.7)

wherein the vertex ordering follows from the succeeding considerations, comparable

to figure 5.3.c. The triangle (v5, v13, v12) is of type 4toc, whereas (v5, v6, v13, v12) is

of type ¤pris; the two boundary elements touch because three vertices are shared.

The boundary pair corresponds to the first of the three topological configurations

that need to be distinguished in δ(4toc,¤pris)5, because v5 and v12 form an edge

of a triangular boundary of the same prism and v5 does not lie opposite to v6, the

unoccupied vertex of the quad.

The triangle (v5, v7, v12) is of type 4toc and (v5, v7, v14, v12) is of type ¤pris. The

vertex v5 lies opposite to the unoccupied vertex v14 of the quad. The same holds for the

heterogeneous touching boundary pair consisting of (v5, v2, v12) and (v5, v2, v10, v12).

Both pairs are of the second topological configuration of (4toc,¤pris); therefore their

respective weights appear twice in expression 5.2.7.

Finally, we regard the boundary pair consisting of the triangle (v5, v6, v13) of type

4toc and the quad (v5, v6, v13, v12) of type ¤pris. Neither the edge (v5, v6) nor the

edge (v5, v13) is part of a triangular boundary of the prism; thus the weights in the

rightmost picture of figure 5.2.c apply.

Next, we derive the distortion caused by a tetrahedral-octahedral boundary that

touches boundaries of cubes. In each or the three distinct pairs at the 5-th vertex,

v5 does not lie opposite to the unoccupied vertex of the quad. Hence, we gather
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δ(4toc,¤cube)5 as in

δ(4toc,¤cube)5 =
1

3
([v5 | v7 | v8] + [v5 | v3 | v6] + [v5 | v3 | v2])




− 1
36

−1
9

5
36


 .

The same strategy applies to δ(4pris,¤cube)5. In our example mesh, the triangle

(v5, v7, v4) of type 4pris touches the quad (v5, v8, v7, v4) of type ¤cube, but v5 does

not lie opposite to v8. The contrary is true for the pair consisting of the triangle

(v5, v2, v4) and the quad (v5, v2, v1, v4), in which v5 lies opposite to v1. Thus, we join

the vertices of the two triangles to

δ(4pris,¤cube)5 =
1

2
([v5 | v7 | v4]




0

−1
8

1
8


 + [v5 | v2 | v4]




−1
4

1
8

1
8


).

The quad (v5, v8, v9, v6) is simultaneously a boundary of a prism and a cube.

Vertex v8 is distinguished because the edge (v5, v8) belongs to triangular boundary of

the prism. Because there is only one such quad in the mesh at v5,

δ(¤pris, ¤cube)5 = [v5 | v8]


 − 1

24

1
24


 = − 1

24
v5 +

1

24
v8.

These distortions are substituted into equations 5.2.2 to obtain the positions of

the three clones of the 5-th vertex.

In the bi-uniform mesh configuration the respective distortions reduce to the con-

volution operators derived in the previous chapter. Figure 5.2 illustrates how each

split into the various topological configurations is motivated by the ordinary mask.

The idea to distribute the weights at the center vertex so that each resulting stencil

sums to zero (concerning the boundary pairs displayed in 5.2.c-e ) is due to S. Schae-

fer. That choice greatly simplifies joining the contributions of the various topological

configurations.
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Figure 5.4 : Linear subdivision for each of the four shapes. Selected vertices are
labeled and computed. Indices increase as needed. The extension pris is ommited
for the clones ci4 , ci5 and ci6 .

Future work will address smoothness properties of the scheme at extraordinary

edges and vertices. Results on that matter might suggest modifications on how to

generalize the unzipping masks from the bi-uniform schemes.

5.3 Linear subdivision and averaging

Linear subdivision and averaging is the factorization of one round of ordinary subdi-

vision into two consecutive steps. Such factorizations were developed simultaneously

in [MW01], [St01] and [ZS01].

In the volumetric scenario, linear subdivision accesses the clones and topology

information of the unzipped volumetric mesh to build a new mesh. Each shape of the

unzipped mesh results in multiple “smaller” shapes as displayed in figure 5.4. Vertices

that appear as edge-, face- and shape-midpoints are simple affine combinations of the

respective clones. Inserted vertices such as the edge-midpoints

wj =
ci1,toc + ci2,toc

2
and wk =

ci1,pris + ci2,pris

2
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Figure 5.5 : Another example of one round of subdivision inside of a volumetric mesh.
An edge-midpoint of a triangular boundary of the prism is topologically identified with
the face-midpoint of the adjacent quad of the cube.

from figure 5.1 are considered topologically identical, whenever the vertex indices

and the weights of the affine combination are identical. Additionally, whenever a

boundary triangle coveres half of a boundary quad, the edge-midpoint inserted by the

triangle along the diagonal of the quad is topologically identified with the inserted

face-midpoint of the quad. The latter case occurs in figure 5.5.

The averaging pass operates on the mesh after linear subdivision. The character-

istic matrices for tetrahedra and octahedra are taken from [SW04] as

Ξtetr =
1

48




−3 17 17 17

17 −3 17 17

17 17 −3 17

17 17 17 −3




and Ξocta =
1

24




9 2 2 7 2 2

2 9 2 2 7 2

2 2 9 2 2 7

7 2 2 9 2 2

2 7 2 2 9 2

2 2 7 2 2 9




.
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Figure 5.6 : Effect of the characteristic matrix on a single vertex.

For triangular prisms we define

Ξpris =
1

16




2 3 3 2 3 3

3 2 3 3 2 3

3 3 2 3 3 2

2 3 3 2 3 3

3 2 3 3 2 3

3 3 2 3 3 2




,

and Ξcube is an 8× 8 matrix where all entries equal 1
8
. For each shape we gather the

vertices of the shape wjk
for k = 1...n in a matrix and multiply the concatenation by

the characteristic matrix of the shape. n = 4 for tetrahedra, n = 6 for octahedra and

triangular prisms and n = 8 for each cube in the mesh.

[wj1 | wj2 | ... | wjn ]Ξ = [w′
j1
| w′

j2
| ... | w′

jn
]. (5.3.1)

From the result we extract new vertex positions of the shape: w′
j1

replaces wj1 , w′
j2

replaces wj2 , etc. Note that in the concatenation the vertex ordering is relevant for

octahedra or triangular prisms, due to the shape of Ξocta and Ξpris.

Until now, the topological identification of the vertices is not modified under the

averaging pass. In a final loop, topologically identical vertices are collapsed into one
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Figure 5.7 : Region of a volumetric mesh is displayed after unzipping and linear
subdivision in a). Result of multiplying each shape’s vertices with the respective
characteristic matrix is shown in b). Vertex positions are chosen for illustration
purposes (not obtained by exact evaluation). The vertices of the bottom right prism
are enumerated before and after multiplied by Ξpris. Also, a group of topologically
identical vertices is highlighted. c) shows the vertex collapse according to equation
5.3.2 for only one vertex, whereas d) shows the collapse for all vertices.

vertex v′j of the output mesh. The formula is

v′j =
1
14

µtoc∑
w′

toc(j) + 1
12

µpris∑
w′

pris(j) + 1
8

µcube∑
w′

cube(j)
µtoc

14
+

µpris

12
+ µcube

8

, (5.3.2)

in which the term
µtoc∑

w′
toc(j) denotes the sum over all vertices that are topologically

identified with the j-th vertex and belong to tetrahedra or octahedra. µtoc denotes

the number of such vertices. The analog holds for
µpris∑

w′
pris(j) and

µcube∑
w′

cube(j).

Then, one round of subdivision is complete. The following example emphasizes

the vertex collapse through the averaging pass, easier to visualize in 2D.

Example 5.2. The triangular-quad scheme of [SW03] is briefly presented here. The

interested reader may also consult [WS04]. The input to the algorithm is an unstruc-

tured mesh consisting of triangles and quads such as in figure 5.8.a. The unzipping
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Figure 5.8 : One round of triangular-quad subdivision shown on an exemplary mixed
mesh. Example 5.2 explains the process. Vertex positions are chosen for illustration
purposes (not obtained by exact evaluation).

procedure clones each vertex as vi −→ {ci,tri, ci,quad} according to the formula

ci,tri = vi + δi

ci,quad = vi − δi.
(5.3.3)

Heterogeneous touching boundary pairs are now edges that are shared by a triangle

and a quad. The distortion at the i-th vertex is

δi =
1

n

n∑

k=1

[vi | vpk
]


 − 1

24

1
24


 = − 1

24
vi +

1

24n

n∑

k=1

vpk
,

when there are n such edges (vi, vpk
), for k = 1...n, adjacent to the i-th vertex. In

figure 5.8.b triangles are connected to clones of type tri, whereas the corners of the

quads are clones of type quad.

Linear subdivision introduces edge- and face-midpoints and redefines the topology,

as shown in figure 5.8.c. The averaging pass loops over the new shapes generated by

linear subdivision. The characteristic matrix for triangles is

Ξtri =
1

8




2 3 3

3 2 3

3 3 2


 ,
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whereas Ξquad is a 4× 4 matrix with all entries equal to 1
4
. The vertices of each shape

are gathered in a matrix with n columns and multiplied by the corresponding Ξ as in

[wj1 | wj2 | ... | wjn ]Ξ = [w′
j1
| w′

j2
| ... | w′

jn
].

n = 3 for triangles and n = 4 for quads. w′
j1

replaces wj1 , etc. In figure 5.8.d the new

positions of the vertices are drawn close to their original positions to indicate several

topologically identical vertices surrounded by dark frames.

The linear combination to perform the collapse of topologically identical vertices

similar to expression 5.3.2 is

v′j =
1
6

µtri∑
w′

tri(j) + 1
4

µquad∑
w′

quad(j)
µtri

6
+

µquad

4

,

in which the term
µtri∑

w′
tri(j) denotes the sum over all vertices that are topologically

identified with the j-th vertex and belong to triangles. µtri denotes the number of

such vertices. The analog holds for
µquad∑

w′
quad(j). In the example mesh the vertices

contained by the square are topologically identical and µtri = 3 and µquad = 2.

The mesh in figure 5.8.e is the output of the algorithm, ready to perform another

round of subdivision.

5.4 Implementation

An open source implementation of the scheme in C++ together with a volumetric

subdivision utility is available at

www.hakenberg.de/subdiv/volume.htm

The program is able to parse mesh files in text format and subdivide a mesh as

specified by a user. The outcome is also stored in text format.
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5.5 Deformations

Three-dimensional modelling and animation software usually incorporates deforma-

tion tools, which allow an artist to vary for instance the pose of a humanoid model,

such as raising an arm or bending a knee. Formally, a deformation determines new

positions for all model vertices Vm. Often the number of model vertices is large, but

the desired deformation is simple, e.g. the distances between nearby model vertices

before and after the deformation varies little.

A common approach to reduce the effort in generating deformations is to introduce

a few control vertices Vc that belong to a volumetric mesh, which encloses the region

of the model that is to be deformed. The numbers in the spoon example in figure 1.2

are |Vm| = 1852 whereas |Vc| = 50. The vertex positions of the deformed model Ṽm

are defined via matrix multiplication

(Vc + H)D = Ṽm, (5.5.1)

where V# functions as a 3×|V#| matrix that is a concatenation of the vertex positions.

If the matrix of control point excursion H ∈ R3×|Vc| is zero, the identity VcD =

Vm holds. The topology of the model, such as the triangulation, is invariant under

deformation.

The rectangular matrix D ∈ R|Vc|×|Vm| is of the form D = SB, where the matrix

S ∈ R|Vc|×|Vs| takes the control vertices Vc to the k-times subdivided volumetric mesh

with vertices Vs as in

VcS = Vs.

Let S contain the subdivision weights.

The entries of the i-th column of the matrix B ∈ R|Vs|×|Vm| are the barycentric

coordinates of the model vertex vi ∈ Vm with respect to the vertices of the (tiny)

volumetric shape of the subdivided mesh that contains vi (in the geometrical sense).

All other vertices from Vs, not belonging to the volumetric shape, correspond to a
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Figure 5.9 : The model Noma courtesy of Mike Beals top left is deformed into several
poses.
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Figure 5.10 : Deformation via a volumetric control mesh a) animates palm in real-
time c). The precomputation of matrix D in eq. 5.5.1 involves subdividing the control
mesh several times as displayed in b).

zero entry in the i-th column of B. We write

VsB = Vm.

The paper [WS02] describes how barycentric coordinates are determined inside convex

polytopes, such as for a point enclosed in an octahedron with respect to the six vertices

of the octahedron. The boundary of a prism or a cube is patched at least partially by

quads, which might not be geometrically planar. In such a case the quads of the shape

are triangulated so that the shape is convex, which is possible as long as the shape

is not degenerate. Through this process a vertex of the model might be contained by

multiple volumetric shapes, in which case we could average the barycentric coordinate

contributions.

The deformation results are visually appealing when the depth k of subdivision of

the volumetric control mesh is adjusted so that each tiny volumetric shape contains

only a few model vertices.

Since deformation of a model is described by a (sparse) matrix multiplication

in equation 5.5.1, the computation can be carried out very efficiently. Figure 5.10

illustrates how in a computer game this technique is used to simulate the bending
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of a palm tree in the wind. Because the computation is done for each frame of the

display instead of being precomputed, the control vertices Vc also make the tree react

upon collisions. Edges of the control mesh are treated as springs that in principle

force the plant to its originial position .

To achieve the various poses of the humanoid model in figure 5.9, repositioning

the |Vc| = 204 control vertices individually is too arduous. Instead, we associate a

rigid skeleton to the model, which is to approximate the natural skeleton of a human.

Joints of the artificial skeleton are located at the knees, shoulders, etc. Then, it

makes sense to fix the position of a control point relative to the coordinate system of

a nearby joint, so that upon rotating the joints the control points reposition in world

coordinates. In the example the number of joints used is 31.

A few control points might need to be positioned manually to compensate for

changes in volume that might manifest in the model in the neighborhood of an ex-

cessive joint rotation. We experimented with several approaches to automate the

correction process but did not find a satisfactory universal solution.
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